Institute of Computing

Introduction

The Institute of Computing (IoC), formerly known as Institute of Information Technology (IIT), is one of the pioneer and largest academic institute at Kohat University of Science and Technology (KUST). IoC offers various Degree, certification programmes and provide trainings and services to other departments at the campus. The degree programmes are in par with the HEC and other universities of international repute. Apart from offering regular academic programmes, the institute organizes various seminars, workshops and conferences on the latest topics and issues in computing on regular basis. The institute enjoys the support of an outstanding team of experienced, highly skilled and young faculty members. The existing faculty members are well qualified from reputed universities of Pakistan and abroad. The faculty provides expertise in various specialization areas such as IT Management, Security Technologies, Network Technologies, Software Technologies, Artificial Intelligence, Data Mining, Mobile Technologies, Distributed Systems and Theoretical Computer Science. The department also offers state-of-the art facilities that include auditorium, well equipped lecture rooms, multi-purpose Computing Labs, Final Year Projects Lab, Research & Development Cell, Huawei Lab, Cisco Lab and Web Development Cell. The class rooms and labs are equipped with latest teaching aids such as multimedia projectors, LEDs and OHPs for students and teachers.

Teaching Faculty:

The IoC is known because of its outstanding faculty where the Institute has attracted some highquality faculty members during the last few years. The list of prominent faculty members is given below. The Institute also gets supports from other departments to teach specialization courses.

٠	Professor Fida Youns Khattak	Dean of the Faculty
٠	Dr. Shafiullah Khan	Director/ Associate Professors
٠	Dr. Hammad Hassan	Assistant Professors
٠	Dr. Asad Habib	Assistant Professors
٠	Dr. Jawad Ashraf	Assistant Professors
٠	Dr. Amjad Mehmood	Assistant Professors
•	Dr. Muhammad Zeeshan	Assistant Professors
٠	Dr. Zeeshan Iqbal	Assistant Professors
•	Dr. Abdul Shahid	Assistant Professors
٠	Dr. Saima Hassan	Assistant Professors
٠	Dr. Muhammad Irfan ud Din	Assistant Professors
٠	Dr. Shafaq Mussadiq	Assistant Professors
٠	Ms. Rabia Khan	Assistant Professors
•	Dr. Muhammad Altaf Khan	Lecturer
•	Mr. Muhammad Sohail	Lecturer
•	Mr. Abdur Rehman	Lecturer
•	Mr. Muhammad Abrar Khan	Lecturer
•	Mr. Qadeem Khan	Lecturer
•	Mr. Faisal Baseer	Lecturer
•	Mr. Tahir Naeem	Lecturer
•	Mr. Muhammad Ali Zeb	Lecturer
٠	Mr. Noor Mast	Lecturer

•	Mr. Muhammad Adnan	Lecturer
•	Mr. Ilyas Ahmad	Lecturer
•	Dr. Muhammad Muneer Umar	Lecturer
•	Mr. Sana Ullah Khan	Lecturer
•	Mr. Sajid Ullah	Lecturer
•	Mr. Muhammad Roman	Lecturer

Academic Programmes

The Institute offers the following undergraduate and graduate degree programmes:

- Undergraduate Degree Programmes (4 years)
 - BS in Computer Science (BSCS)
 - BS in Software Engineering (BSSE)
- 16 Year Master Degree (2 years Master after 14 years of education)
 - Master in Computer Science (MCS)
- Graduate Degree Programmes
 - PhD in Computer Science
 - MS in Computer Science (MSCS)
 - MS in Data Science (MSDS)
 - MS in Software Engineering (MSSE)

BS Computer Sciences

BS in Computer Sciences is a four-years bachelor degree programme. This programme is designed as per the national and international standards. Graduates of this programme are pursuing successful careers in academia, industry and R&D organizations in Pakistan and abroad. This programme is accredited by the National Computing Education Accredited Council (NCEAC), HEC.

Area of Specialization

The Institute offers various specializations during the four-years BSCS degree. The students can choose subjects from the specialty of their own interest. However, the Institute offers only those specializations where the total number of students is more than 10.

The curriculum of BS Computer Sciences is divided into various categories as shown in the below table:

Sr	Category	Description	Credit
#			Hours
1	University	Courses under this category are compulsory which	28
	Requirements	are completed by all bachelor students at KUST.	
2	Faculty Common	Support area courses - Only required for students who are	18
	Courses	registered in Computer Science related degrees.	
3	Core Course	Core courses related to the degree programme as per	58
		the HEC and KUST guidelines.	

4	Technical Elective	In the senior year students are provided opportunity	24
-		to abage and of an axializations of their interest. The	2-1
		to choose area of specializations of their interest. The	
		Institute offers various important latest courses for	
		students so they can choose market oriented courses	
		for their electives.	
5	Senior Design	In order to train students to tackle a project relating	6
	Project/Electives	the real world problems, senior design project is	
		offered that is spread over the last two semesters.	
	Total		134

BS Computer Science (Semester Plan)

The BSCS degree programme is divided into eight semesters as follows.

Semester wise plan

Code	Course Title	CrHr	Pre- Req	Code	Course Title	CrHr	Pre-Req
Year 1 Semester 1				Year 1 Semester II			
XXX***	UR-I	4(3+1)	None	MATH103	Discrete Mathematics	3(3+0)	None
CS102	Programming Fundamentals	4(3+1)	None	CS213	Object Oriented Programming	4(3+1)	CS102
XXX***	FR-I	3(3+0)	None	CS131	Digital Logic and Design	3(3+0)	None
XXX***	UR-II	3(3+0)	None	XXX***	UR-IV	3(3+0)	None
XXX***	UR-III	3(3+0)	None	XXX***	UR-V	3(3+0)	None
				XXX***	UR-VI	3(3+0)	None
Year 2 Ser	mester III	T	1	Year 2 Seme	ster VI	1	
CS211	Data Structure and Algorithm	4(3+1)	None	CS251	Software Engineering	3(3+0)	CS101
XXX***	FR-II	3(3+0)	None	CS241	Web Engineering	4(3+1)	CS102
XXX***	FR-III	3(3+0)	None	CS222	Database Management Systems	4(3+1)	CS211
XXX***	FR-IV	3(3+0)	None	CS212	Operating System Concepts	4(3+1)	None
XXX***	UR-VII	3(3+0)	None	XXX***	FR-V	3(3+0)	None
Year 3 Se	emester V			Year 3 Sem	ester VI		
CS233	Computer Organization and Assembly Language	4(3+1)	CS131	CS372	Information Security	3(3+0)	None
CS311	Theory of Automata	3(3+0)	None	CS363	Artificial Intelligence	3(3+0)	None
CS371	Data Communication and Computer Networks	4(3+1)	CS101	CSxxx	CS Elective-II	3(3+0)	None
CSxxx	CS Elective-I	3(3+0)	None	CSxxx	CS Elective-III	3(3+0)	None
XXX***	UR-VIII	3(3+0)	None	XXX***	UR-IX	3(3+0)	None
				XXX***	FR-VI	3(3+0)	
				CS494	Industrial Training	0	None
				(Optional)	Internship	0	None
Year 4 Se	emester VII			Year 4 Sem	ester VIII		
CS411	Design and Analysis of Algorithms	4(3+1)	CS211	CS443	Computer Graphics	4(3+1)	None
CSxxx	CS Elective-IV	3(3+0)	None	CSxxx	CS Elective-VII	3(3+0)	None
CSxxx	CS Elective-V	3(3+0)	None	CSxxx	CS Elective-VIII	3(3+0)	None
CSxxx	CS Elective-VI	3(3+0)	None	CS499	Final Year Project-II	3(0+3)	CS498
CS498	Final Year Project-I	3(0+3)	None				

Note: UR: University Requirement Courses, FR: Faculty Requirement Courses

A. University Requirement Courses (28 CrHr to be completed from this list)

These courses are related to general education category which are offered in various semesters as per the semester plan shown above. Some of the courses such as Islamic studies, Pakistan studies and English are compulsory and must be studied by all students. Students will be required to complete certain courses and credit hours from this list as per the approved plan of the respective programme.

Code	Title	CrHr	Pre-Requisite
ENG112	Study Skills	3(3+0)	None
ENG151	Functional English	2(3+0)	None
ENG253	Communication Skills	3(3+0)	ENG112
ENG334	Technical and Business Writing	3(3+0)	ENG253
RS101	Islamic Studies *	3(3+0)	None
PS101	Pakistan Studies *	3(3+0)	None
CS101	Introduction to Computing *	3(3+0)	None
ECON102	Fundamentals of Economics	3(3+0)	None
MS121	Principles of Management	3(3+0)	None
MS261	Financial Accounting	3(3+0)	None
MS251	Financial Management	3(3+0)	None
MS131	Human Resources Management	3(3+0)	None
MS331	Organizational Theory and Behavior	3(3+0)	None
MS311	Entrepreneurship	3(3+0)	None
SWS101	Introduction to Sociology	3(3+0)	None
SWS231	Social Psychology	3(3+0)	None
SWS215	Human Rights	3(3+0)	None
SWS201	Social Work and Human Behavior	3(3+0)	None
PHI101	Introduction to Logic	3(3+0)	None
BS252	Computer Applications in Finance	3(3+0)	None

*Compulsory (must be offered) and three courses of English language are also compulsory

B. Faculty Requirement Courses (18 CrHr to be completed from this list)

As this programme is offered by the Faculty of Physical and Numerical Sciences, therefore, there are certain courses which are mandatory to be offered to strengthen the fundamental scientific concepts of the students. Students will be required to complete 18 CrHr from the following list of Subjects.

Code	Title	CrHr	Pre-Requisite
STAT102	Probability and Statistics	3(3+0)	None
MATH101	Calculus – I	3(3+0)	None
PHY101	Introductory Mechanics	3(3+0)	None
MATH311	Linear Algebra	3(3+0)	None
MATH471	Mathematical Modeling	3(3+0)	None
MATH271	Ordinary Differential Equations	3(3+0)	None
MATH473	Operation Research	3(3+0)	None

C. Core Courses (58 CrHr):

The following courses are the core courses those are compulsory for every student registered in BSCS degree programme.

Code	Title	CrHr	Pre-Requisite
CS102	Programming Fundamentals	4(3+1)	None
CS213	Object Oriented Programming	4(3+1)	CS102
CS211	Data Structures and Algorithms	4(3+1)	None
MATH103	Discrete Mathematics	3(3+0)	None
CS212	Operating Systems Concepts	4(3+1)	CS211
CS222	Database Management Systems	4(3+1)	CS211
CS251	Software Engineering	3(3+0)	CS101
CS371	Data Communication and Computer Networks	4(3+1)	CS101
CS372	Information Security	3(3+0)	None
CS131	Digital Logic and Design	3(3+0)	None
CS311	Theory of Automata	3(3+0)	None
CS233	Computer Organization and Assembly Language	4(3+1)	CS131
CS411	Design and Analysis of Algorithms	4(3+1)	CS211
CS241	Web Engineering	4(3+1)	CS102
CS363	Artificial Intelligence	3(3+0)	None
CS443	Computer Graphics	4(3+1)	None

D. CS Technical Electives

An important aspect of the CS curriculum is the Technical Elective courses. Students are given choices towards the end of the programme to choose specialization of their own interest. Students are required to complete 24 CrHr from the following list of courses as per the guidance of the Institute.

Note: Students will be allowed to choose electives courses from BS in Computer Science, or other BS degree programmes approved by relevant statutory bodies/authorities of KUST. Furthermore, additional courses may be added to the below list after approval from the respective boards/authorities.

Code	Title	Cr Hrs	Pre-Requisite				
General El	General Electives Courses						
CS316	Visual Programming	3(2+1)	CS213				
CS413	Parallel and Distributed Computing	3(3+0)	None				
CS416	Distributed Systems	3(3+0)	CS371				
CS417	Mobile Application Development	3(2+1)	CS213				
CS223	Management Information System	3(3+0)	None				
CS324	e-Business	3(3+0)	None				
CS421	Distributed Database Systems	3(3+0)	CS222				
CS422	Big Data Concepts	3(3+0)	None				
CS423	Data-warehousing and Data mining	3(3+0)	CS222				
CS325	Data Science	3(3+0)	None				
CS332	Computer Architecture	3(3+0)	None				
CS431	Digital Signal Processing	3(3+0)	None				
CS432	Microprocessor and Assembly Language	3(3+0)	None				
CS433	Embedded Systems	3(3+0)	None				
CS434	System Programming	3(3+0)	None				
CS343	Multimedia Technologies	3(3+0)	None				
CS344	Internet Concepts	3(3+0)	CS241				

CS444	Digital Image Processing	3(3+0)	None				
Software E	Software Engineering						
CS451	System Analysis and Design	3(3+0)	None				
CS453	Object Oriented Analysis & Design	3(3+0)	CS251				
CS454	Software Project Management	3(3+0)	CS251				
CS455	Software Quality Assurance	3(3+0)	CS251				
CS456	Usability Engineering	3(3+0)	CS251				
CS457	Simulation and Modeling	3(3+0)	CS251				
Artificial In	ıtelligence						
CS364	Human Computer Interaction	3(3+0)	None				
CS462	Artificial Neural Networks	3(3+0)	CS363				
CS467	Machine Learning	3(3+0)	CS363				
CS468	Information Retrieval	3(3+0)	CS363				
CS469	Natural Language Engineering	3(3+0)	CS363				
Networks &	& Communication						
CS471	Network Programming	3(2+1)	CS371				
CS472	Network Protocols	3(3+0)	CS371				
CS473	Wireless Networks	3(3+0)	CS371				
CS474	Advanced Computer Networks	3(3+0)	CS371				
CS477	Multi-hop Networks	3(3+0)	CS371				
CS478	Telecommunication Systems	3(3+0)	CS371				
CS476	Network Security	3(3+0)	CS371				

E. Senior Design Project: (6 Cr-Hrs)

Senior design project is one of the important aspects the Computer Science programme. The project is spread over two semesters. Students are required to work on a real world problem under the supervision of a senior faculty members. Students can complete this segment in group form as well.

Code	Title	CrHr	Pre-Requisite
CS498	Senior Design Project – I	3(0+3)	None
CS499	Senior Design Project – II	3(0+3)	CS498

BS Software Engineering

Recently, IoC started BS in Software Engineering. It is a four-years bachelor level degree programme designed according to the national and international standards in Software Engineering. The curriculum of BS Software Engineering is divided into various categories as shown in the below table. This programme is registered with the National Computing Education Accredited Council (NCEAC), HEC. The NCEAC will visit soon to the Institute to formally inspect this progarmme for accreditation.

Sr #	Category	Description	Credit Hours
1	University Requirements	Courses under this category are compulsory which are completed by all bachelor students at KUST.	28
2	Faculty Common Courses	Support area courses - Only required for students who are registered in Computer Science related degrees.	12
3	Core Course	Core courses related to the degree programme as per the HEC and KUST guidelines.	67
4	Technical Elective	In the senior year students are provided opportunity to choose area of specializations of their interest. The Institute offers various important latest courses for students so they can choose market oriented courses for their electives.	21
5	Senior Design Project/Electives	In order to train students to tackle a project related real world problems, senior design project is offered that is spread over the last two semesters.	6
	Total		134

BS Software Engineering (Semester Plan)

The BSSE degree programme is divided into eight semesters as follows.

Semester wise plan

Code	Course Title	CrHr	Pre- Req	Code	Course Title	CrHr	Pre-Req
Year 1 Seme	ester I			Year 1 Semester	·II		
XXX***	UR-I	4(3+1)	None	MATH103	Discrete Mathematics	3(3+0)	None
CS102	Programming Fundamentals	4(3+1)	None	CS213	Object Oriented Programming	4(3+1)	CS102
XXX***	FR-I	3(3+0)	None	SE101	Software Engineering	3(3+0)	None
XXX***	UR-II	3(3+0)	None	XXX***	UR-IV	3(3+0)	None
XXX***	UR-III	3(3+0)	None	XXX***	UR-V	3(3+0)	None
				XXX***	UR-VI	3(3+0)	None
Year 2 Seme	ester III			Year 2 Semester IV			
CS211	Data Structure and Algorithm	4(3+1)	None	SExxx	SE Elective-I	3(3+0)	None
SE202	Software Requirement Engineering	3(3+0)	SE101	CS241	Web Engineering	4(3+1)	CS102
XXX***	FR-II	3(3+0)	None	CS222	Database Management Systems	4(3+1)	CS211

XXX***	FR-III	3(3+0)	None	CS212	Operating System Concepts	4(3+1)	None
XXX***	UR-VII	3(3+0)	None	CS364	Human Computer Interaction	3(3+0)	None
Year 3 Seme	ester V			Year 3 Semester	r VI		
XXX***	FR-IV	3(3+0)	None	CS372	Information Security	3(3+0)	None
SE341	Software Quality Engineering	3(3+0)	SE101	CS315	Software Construction and Development	3(3+0)	None
CS371	Data Communication and Computer Networks	4(3+1)	CS101	SExxx	SE Elective-II	3(3+0)	None
XXX***	UR-VIII	3(3+0)	None	SExxx	SE Elective-II	3(3+0)	None
SE312	Formal Methods in Software Engineering	3(3+0)	None	XXX***	UR-IX	3(3+0)	None
				SE311	Software Design and Architecture	3(3+0)	SE101
				SE494 (Optional)	Industrial Training Internship	0	None
Year 4 Seme	ester VI			Year 4 Semester	r VII		
SE422	Software Project Management	3(3+0)	None	SE411	Software Re- Engineering	3(3+0)	None
SExxx	CS Elective-IV	3(3+0)	None	SExxx	CS Elective-VII	3(3+0)	None
SExxx	CS Elective-V	3(3+0)	None	SExxx	CS Elective-VI	3(3+0)	None
SE441	Software Testing	3(3+0)	None	CS457	Simulation and Modeling	3(3+0)	None
SE498	Final Year Project-I	3(0+3)	None	SE499	Final Year Project-II	3(0+3)	CS498

UR: University Requirement Courses

FR: Faculty Requirement Courses

A. University Requirement Courses (28 CrHr to be completed from this list)

These courses are related to general education category which are offered in various semesters as per the semester plan shown above. Some of the courses such as Islamic studies, Pakistan studies and English are compulsory and must be studied by all students. Students will be required to complete certain courses and credit hours from this list as per the approved plan of the respective programme.

Code	Title	CrHr	Pre-Requisite
ENG112	Study Skills	3(3+0)	None
ENG151	Functional English	2(3+0)	None
ENG253	Communication Skills	3(3+0)	ENG112
ENG334	Technical and Business Writing	3(3+0)	ENG253
RS101	Islamic Studies *	3(3+0)	None
PS101	Pakistan Studies *	3(3+0)	None
CS101	Introduction to Computing *	3(3+0)	None
ECON102	Fundamentals of Economics	3(3+0)	None
MS121	Principles of Management	3(3+0)	None
MS261	Financial Accounting	3(3+0)	None
MS251	Financial Management	3(3+0)	None
MS131	Human Resources Management	3(3+0)	None
MS331	Organizational Theory and Behavior	3(3+0)	None
MS311	Entrepreneurship	3(3+0)	None
SWS101	Introduction to Sociology	3(3+0)	None
SWS231	Social Psychology	3(3+0)	None

SWS215	Human Rights	3(3+0)	None
SWS201	Social Work and Human Behavior	3(3+0)	None
PH101	Introduction to Logic	3(3+0)	None
BS252	Computer Applications in Finance	3(3+0)	None

*Compulsory (must be offered) and three courses of English language are also compulsory

B. Faculty Requirement Courses

As this programme is offered by the Faculty of Physical and Numerical Sciences, therefore, there are certain courses which are mandatory to be offered to strengthen the fundamental scientific concepts of the students. Students will be required to complete 12 CrHr from the following list of Subjects.

Code	Title	CrHr	Pre-Requisite
STAT102	Probability and Statistics	3(3+0)	None
MATH101	Calculus – I	3(3+0)	None
PHY101	Introductory Mechanics	3(3+0)	None
MATH311	Linear Algebra	3(3+0)	None
CS401	Operation Research	3(3+0)	None

C. Core Courses (67 CrHr):

The following courses are the core courses. These are compulsory for every student registered in BSSE degree programme.

Code	Title	CrHr	Pre-Requisite
CS102	Programming Fundamentals	(3 3 4)	None
CS213	Object Oriented Programming	(3 3 4)	CS102
CS211	Data Structures and Algorithms	(3 3 4)	None
MATH103	Discrete Mathematics	3(3+0)	None
CS212	Operating Systems Concepts	(3 3 4)	CS211
CS222	Database Management Systems	(3 3 4)	CS211
SE101	Software Engineering	3(3+0)	None
CS371	Data Communication and Computer Networks	(3 3 4)	CS101
CS372	Information Security	3(3+0)	None
CS241	Web Engineering	(3 3 4)	CS102
SE202	Software Requirement Engineering	3(3+0)	SE101
SE341	Software Quality Engineering	3(3+0)	SE101
SE311	Software Design and Architecture	3(3+0)	SE101
SE422	Software Project Management	3(3+0)	None
CS364	Human Computer Interaction	3(3+0)	None
SE411	Software Re-Engineering	3(3+0)	None
SE315	Software Construction & Development	3(3+0)	None
SE312	Formal Methods in Software Engineering	3(3+0)	None
SE441	Software Testing	3(3+0)	None
CS457	Simulation and Modeling	3(3+0)	SE101

D. List of Technical Elective Courses

Technical Elective courses is an important aspect of this programme. Students are given choices towards the end of the programme to select specialization of their own interest. Students are required to complete 24 CrHr from the following list of courses as per the guidance of the Institute.

Note: Students will be allowed to choose electives courses from BS in Software Engineering, or other BS degree programmes approved by relevant statutory bodies/authorities of KUST. Furthermore, additional courses may be added to the below list after approval from the respective boards/authorities.

Code	Title	CrHr	Pre-Requisite
CS417	Mobile Application Development	3(3+0)	CS213
CS311	Theory of Automata	3(3+0)	None
CS431	Digital Signal Processing	3(3+0)	None
CS444	Digital Image Processing	3(3+0)	None
CS421	Distributed Database Systems	3(3+0)	CS222
CS474	Advanced Computer Networks	3(3+0)	CS371
CS463	Artificial Neural Networks	3(3+0)	CS363
CS473	Wireless Networks	3(3+0)	None
CS433	Embedded Systems	3(3+0)	CS363
CS434	System Programming	3(3+0)	None
CS469	Natural Language Engineering	3(3+0)	None
CS343	Multimedia Technologies	3(3+0)	None
CS423	Data-warehousing and data mining	3(3+0)	CS222
CS413	Parallel and Distributed Computing	3(3+0)	None
CS467	Machine Learning	3(3+0)	CS363
CS325	Data Science	3(3+0)	None
CS422	Big Data Concepts	3(3+0)	None
SE201	Object Oriented Software Engineering	3(3+0)	None
SE313	Usability Engineering	3(3+0)	None
SE412	Aspect Oriented Software Engineering	3(3+0)	None
SE314	Software Metrics	3(3+0)	None
SE421	Game Development	3(3+0)	None
SE431	Software Process Engineering	3(3+0)	None
SE442	Software Verification and Validation	3(3+0)	None
CS331	Computer Architecture & Organization	3(3+0)	CS232

E. Senior Design Project: (6 CrHr)

Senior design project is one of the important aspects the Software Engineering degree programme. The project is spread over two semesters. Students are required to work on a real world problem under the supervision of a senior faculty member. Students can complete this segment in groups form as well.

Code	Title	CrHr	Pre-Requisite
SE498	Senior Design Project – I	3(0+3)	None
SE499	Senior Design Project – II	3(0+3)	SE498

Master of Computer Science (MCS) - 16 Years.

The Institute of Computing offers a two years' undergraduate degree programme under the title 'Master in Computer Science (MCS)'. This programme is offered for students who have obtained two years conventional BSc degree in the with relevant courses, i.e., Computer Science, Mathematics and Statistics. This degree programme is spread over four semesters. The year and semester wise details of MCS degree programme are given below.

Sr #	Category	Description	Credit Hours
1	General Education	Courses under this category are compulsory	9
		which are completed by all bachelor students at	
		KUST.	
2	Core Course	Core courses related to the degree programme as	51
		per the HEC and KUST guidelines.	
3	Technical Elective	In the senior year students are provided	6
		opportunity to choose area of specializations of	
		their interest. The Institute offers various	
		important latest courses for students so they can	
		choose market oriented courses for their electives.	
4	Senior Design	In order to train students to tackle a project related	3
	Project/Electives	real world problems, senior design project is	
		offered in the last semester.	
	Total		69

MCS (Semester Plan)

The whole degree programme is divided into four semesters as follows.

Code	Course Title	CrHr	Pre- Req	Code	Course Title	CrHr	Pre-Req
Year 1 Seme	ester I			Year 1 Semester II			
CS102	Programming Fundamentals	4(3+1)	None	CS342	Web Designing	4(3+1)	None
XX***	UR-I	3(3+0)	None	CS113	Object Oriented Programming	4(3+1)	CS102
CS222	Database Management Systems	4(3+1)	None	CS233	Computer Organization & Assembly Language	4(3+1)	None
CS211	Data Structures & Algorithms	4(3+1)	None	CS363	Artificial Intelligence	3(3+0)	CS363
XX***	UR-II	3(3+0)	None	XX***	UR-III	3(3+0)	ENG231
Year 2 Seme	ester III			Year 2 Semester IV			
CS212	Operating Systems Concepts	3(3+0)	CS211	CS***	CS Elective-I	3(3+0)	None
CS371	Data Communication & Networks	4(3+1)	None	CS***	CS Elective-II	3(3+0)	None
CS251	Software Engineering	3(3+0)	CS211	CS443	Computer Graphics	4(3+1)	None
CS311	Theory of Automata	3(3+0)	None	CS454	Software Project Management	3(3+0)	None
CS316	Visual Programming	4(3+1)	CS213	CS493	Final Year Project	3(0+3)	None

A. List of University Requirements

These courses are related to general education which are offered in various semester as per the semester plan shown below. Students will be required to complete 9 CrHr from this list.

Code	Title	CrHr	Pre-Requisite
ENG112	Study Skills	3(3+0)	None
ENG253	Communication Skills	3(3+0)	None
CS101	Introduction to Computing	(3 3 4)	None
MS121	Principles of Management	3(3+0)	None
MATH103	Discrete Mathematics	3(3+0)	None
MS131	Human Resources Management	3(3+0)	None
MS311	Entrepreneurship	3(3+0)	None
SWS101	Introduction to Sociology	3(3+0)	None
SWS231	Social Psychology	3(3+0)	None

B. List of Core Courses

The following courses are the core courses. These are compulsory for every student registered in MCS degree programme.

Code	Title	CrHr	Pre-Requisite
CS102	Programming Fundamentals	4(3+1)	None
CS211	Data Structures & Algorithms	4(3+1)	None
CS213	Object Oriented Programming	4(3+1)	CS102
CS212	Operating Systems Concepts	3(3+0)	CS111
CS233	Computer Organization & Assembly Language	4(3+1)	None
CS311	Theory of Automata	3(3+0)	CS113
CS342	Web Designing	4(3+1)	None
CS222	Database Management Systems	4(3+1)	None
CS316	Visual Programming	4(3+1)	CS213
CS251	Software Engineering	3(3+0)	None
CS371	Data Communication & Networks	4(3+1)	None
CS454	Software Project Management	3(3+0)	CS251
CS443	Computer Graphics	4(3+1)	None
CS363	Artificial Intelligence	3(3+0)	CS111

C. List of Technical Elective

Technical Elective courses are an important aspect of this programme. Students are given choices towards the end of the programme to select specialization of their own interest. Students are required to complete 6 CrHr from the following list of courses as per the guidance of the Institute. Note: Students can also choose Technical Elective courses from the BS Computer Science and BS Software Engineering degree programmes.

Code	Title	Cr Hrs	Pre-Requisite
CS413	Parallel and Distributed Computing	3(3+0)	None
CS416	Distributed Systems	3(3+0)	CS371
CS417	Mobile Application Development	3(2+1)	CS213
CS223	Management Information System	3(3+0)	None

CS324	e-Business	3(3+0)	None
CS421	Distributed Database Systems	3(3+0)	CS222
CS422	Big Data Concepts	3(3+0)	None
CS423	Data-warehousing and Data mining	3(3+0)	CS222
CS325	Data Science	3(3+0)	None
CS332	Computer Architecture	3(3+0)	None
CS431	Digital Signal Processing	3(3+0)	None
CS432	Microprocessor and Assembly Language	3(3+0)	None
CS433	Embedded Systems	3(3+0)	None
CS434	System Programming	3(3+0)	None
CS343	Multimedia Technologies	3(3+0)	None
CS344	Internet Concepts	3(3+0)	CS241
CS444	Digital Image Processing	3(3+0)	None
CS451	System Analysis and Design	3(3+0)	None
CS453	Object Oriented Analysis & Design	3(3+0)	CS251
CS455	Software Quality Assurance	3(3+0)	CS251
CS456	Usability Engineering	3(3+0)	CS251
CS457	Simulation and Modeling	3(3+0)	CS251
CS364	Human Computer Interaction	3(3+0)	None
CS462	Artificial Neural Networks	3(3+0)	CS363
CS467	Machine Learning	3(3+0)	CS363
CS468	Information Retrieval	3(3+0)	CS363
CS469	Natural Language Engineering	3(3+0)	CS363
CS471	Network Programming	3(2+1)	CS371
CS472	Network Protocols	3(3+0)	CS371
CS473	Wireless Networks	3(3+0)	CS371
CS474	Advanced Computer Networks	3(3+0)	CS371
CS477	Multi-hop Networks	3(3+0)	CS371
CS478	Telecommunication Systems	3(3+0)	CS371
CS476	Network Security	3(3+0)	CS371

D. Senior Design Project: (6 CrHr)

Senior design project is one of the important aspects in this programme. Students are required to work on a real world problem under the supervision of a senior faculty member. Students can complete this segment in groups form as well.

	Senior Design Project: (3 CrHr)							
S.No	Code	Title	Pre-Requisite	CrHr				
1	CS493	Project	None	3(0+3)				

Master of Science (MS) Computer Science

MS in Computer Science is a two years graduate level degree programme. IoC is successfully running this degree programme since 2006 The focus of this programme is mainly on research. Students are encouraged to take part in the conferences and seminars arranged by KUST and other universities in the region. The graduates of this programme are well received by the job markets and research organizations.

Programme Structure:

The whole programme can be completed in two years that consists of four semesters with 30 CrHr. The below table shows the overall structure of the programme:

Category	Credit Hours	Description
Core Courses	12	Four core courses are compulsory. A list of core courses is designed based on latest trend in this discipline as per the HEC criteria which will be offered to students in the whole duration. Students will be required to follow the semester plan as given in this prospectus. In case there is any change in the plan, the Institute will inform all students about it.
Elective Courses	12	A number of specialization/major areas have been identified. Relevant courses for each specialization area are listed. Students will be required to complete their credit hours from the chosen area.
Thesis	06	Intensive research to be conducted in this course. The University encourages Master students to publish their research work at international forums.
Paper Publication/ Presentation	0	All students will be required to get published one research paper from their thesis in HEC recognized journal or give presentation in any national conference/workshop during the entire degree program.
Internal Presentation	0	All students will be required to give internal presentation in their research group during the entire degree program.
Total	30	MPhil degree is awarded after successfully completion of all of the above requirements.

MSCS (Semester Plan)

The MSCS degree programme is divided into four semesters as follows.

\checkmark	Course Title	CrHr	Pre- Req	Code	Course Title	CrHr	Pre-Req
Year 1 Semester I		Year 1 Semester II					
CS515	Theory of Computations	3(3+0)	None	CS516	Advance Analysis of Algorithms	3(3+0)	
	Advanced Operating	3(3+0)	None		Advanced Computer	3(3+0)	
CS517	Systems			CS531	Architecture		
CS***	CS Elective – I	3(3+0)	None	CS***	CS Elective – II	3(3+0)	
Year 2 Seme	ester III			Year 2 Semester	· IV		
CS***	CS Elective – III	3(3+0)					
CS***	CS Elective – IV	3(3+0)		CS699	MS Research	-	6(0+6)
CS699	MS Research	6(0+6)		Contd:			

Core Courses (12 CrHr):

The following courses are the core courses which are compulsory for every student to registered in MSCS degree program. Students are required to study all these courses.

Code	Title	Pre-Requisite	CrHr
CS515	Theory of Computations	None	3(3+0)
CS516	Advanced Analysis of Algorithms	None	3(3+0)
CS517	Advanced Operating Systems	None	3(3+0)
CS531	Advanced Computer Architecture	None	3(3+0)

Elective (Student will be required to take – 4 courses) 12 CrHr

Code	Title	Pre- Requisite	CrHr
CS505	Research Methods with an IT Perspective	None	3(3+0)
CS611	Advance Parallel Programming	None	3(3+0)
CS612	Advance Distributed Systems	None	3(3+0)
CS613	Analysis and Design of Parallel Algorithms	None	3(3+0)
CS614	Algorithms for Bio-Informatics	None	3(3+0)
CS622	Advance Data Mining	None	3(3+0)
CS623	Big Data	None	3(3+0)
CS541	Multimedia Computing and Applications	None	3(3+0)
CS542	Computer Vision	None	3(3+0)
CS643	Semantic Web	None	3(3+0)
CS644	Data Compression	None	3(3+0)
CS645	Web Metrics	None	3(3+0)
CS646	Web Usability	None	3(3+0)
CS554	Requirement Engineering	None	3(3+0)
CS555	Software System Architecture	None	3(3+0)
CS556	Advance Software Quality Assurance	None	3(3+0)

CS657	Advance Software Project Management	None	3(3+0)
CS658	Software Testing	None	3(3+0)
CS563	Soft Computing	None	3(3+0)
CS564	Evolutionary Computing	None	3(3+0)
CS565	Advance Natural Language Engineering	None	3(3+0)
CS566	Design and Development of Corpora	None	3(3+0)
CS567	Information Architecture for the World Wide Web	None	3(3+0)
CS568	Advance Human Computer Interaction	None	3(3+0)
CS569	Information Authoring	None	3(3+0)
CS661	Advance Machine Learning	None	3(3+0)
CS662	Advance Artificial Neural Networks	None	3(3+0)
CS665	Development of Natural Language Engineering Resources	None	3(3+0)
CS666	Optimized Input Methods	None	3(3+0)
CS667	Machine Translation	None	3(3+0)
CS668	Advance Information Retrieval	None	3(3+0)
CS571	Advance Computer Communication & Networks	None	3(3+0)
CS576	Advance Network Security	None	3(3+0)
CS573	Wireless and Mobile Networks	None	3(3+0)
CS673	Advance Network Programming	None	3(3+0)
CS676	Network Management	None	3(3+0)
CS677	Advance Information Security	None	3(3+0)
CS678	Networks Middle Ware Design	None	3(3+0)

Thesis/Research: (6 CrHr)

Code	Title	Pre-Req	Cr Hrs
CS699	MS Research Report	None	6(0+6)

Master of Science in Data Science (MSDS)

Big Data Analytics and pervasive computing hinge on the principle axis of data analytics. MSDS programme is going to be relevant in terms of job creation and artisanal smart business generation.

IoC started the graduate level MSDS degree programme in 2018. It is designed to give students the option to be a part of the data science endeavor. We believe our MSDS graduates would benefit from the early-bird advantage in this career oriented and promising field.

The objectives of this programme are enlisted below.

- To equip students to transform data into actionable insights to make complex organizational decisions.
- To enable students, understand and analyze a problem and to arrive at computable solutions.
- To expose students to the set of technologies that match those solutions.
- To gain hands-on experience on data-centric tools for statistical analysis, visualization and big data applications.
- To understand the implications of handling data in terms of data security and business ethics.

Structure of the MSDS program

The program is spread over four semesters according to the following structure. The 6-credit hour thesis is mandatory.

Category	Credit Hours	Description
Core Courses	09	Three core courses are compulsory. A list of core
		courses is designed based on latest trend in this
		discipline as per the HEC criteria which will be
		offered to students in the whole duration. Students
		will be required to follow the semester plan as
		given in this prospectus. In case there is any
		change in the plan, the Institute will inform all
		students about it.
Elective Courses	15	A number of specialization/major areas have
		been identified. Relevant courses for each
		specialization area are listed. Students will be
		required to complete their credit hours from the
		chosen area.
Thesis	06	Intensive research to be conducted in this course.
		The University encourages Master students to
		publish their research work at international
		forums.
Paper Publication/	0	All students will be required to get published one
Presentation		research paper from their thesis in HEC
		recognized journal or give presentation in any
		national conference/workshop during the entire
		degree program.

Internal Presentation	0	All students will be required to give internal presentation in their research group during the entire degree program.
Total	30	MPhil degree is awarded after successfully completion of all of the above requirements.

MSDS (Semester Plan)

The MSDS degree programme is divided into four semesters as follows.

Code	Course Title	CrHr	Pre- Req	Code	Course Title	CrHr	Pre-Req
Year 1 Semester I				Year 1 Semeste	er II		
	Tools and Techniques	3(3+0)	None		Advance Machine	3(3+0)	None
DS501	for Data Science			CS661	Learning		
	Statistical and	3(3+0)	3(3+0)				
	Mathematical Methods			DS***	DS Elective – II	3(3+0)	None
DS502	for Data Analysis						
DS***	DS Elective – I	3(3+0)	3(3+0)	DS***	DS Elective – III	3(3+0)	None
Year 2 Semester III			Year 2 Semeste	er IV			
CS***	CS Elective – III	3(3+0)					
CS***	CS Elective – IV	3(3+0)		DS699	MS Research	-	6(0+6)
DS699	MS Research	6(0+6)		Contd:			

Core Courses (09 CrHr):

The following courses are the core courses which are compulsory for every student to registered in MSDS degree programme. Students are required to study all these courses.

Code	Title	Pre-Requisite	CrHr
DS501	Tools and Techniques for Data Science	None	3(3+0)
	Statistical and Mathematical Methods for Data		3(3+0)
DS502	Analysis	None	
CS661	Advance Machine Learning	None	3(3+0)

Elective (Student will be required to take – 5 courses) 15 CrHr

Code	Titla	Pre-	
Code		Requisite	CrHr
CS542	Computer Vision	None	3(3+0)
CS614	Algorithms for Bio-Informatics	None	3(3+0)
CS565	Advance Natural Language Engineering	None	3(3+0)
DS503	Bayesian Data Analysis	None	3(3+0)
DS504	Data Visualization	None	3(3+0)
DS505	Deep Learning	None	3(3+0)
DS506	Optimization Methods for Data Science and Machine Learning	None	3(3+0)
DS604	Deep Reinforcement Learning	None	3(3+0)
DS602	Probabilistic Graphical Models	None	3(3+0)
DS603	Social network analysis	None	3(3+0)
DS604	Time series Analysis and Prediction	None	3(3+0)
DS511	Algorithmic trading	None	3(3+0)
DS512	Cloud computing	None	3(3+0)
DS513	Distributed Data Processing and Machine Learning	None	3(3+0)

DS611	Distributed Machine Learning in Apache Spark	None	3(3+0)
DS612	High performance computing	None	3(3+0)
DS521	Big Data Analytics	None	3(3+0)
DS522	Computational Genomics	None	3(3+0)
DS621	Inference & Representation	None	3(3+0)
DS622	Scientific Computing in Finance	None	3(3+0)

Thesis/Research: (6 CrHr)

Code	Title	Pre- Requisite	CrHr
DS699	MS Research Report	None	6(0+6)

Master of Science in Software Engineering MSSE

The Master of Science in Software Engineering (MSSE) degree programme is designed to equip our students with theoretical as well as applied knowledge of software life cycle for solution of complex problems. It is aimed to prepare the students to learn independently in a constantly changing and challenging discipline.

Program Objectives

The objectives of MS (Software Engineering) degree programme are enlisted below.

- 1. Prepare students who can critically apply concepts, theories and practices to provide creative solutions of complex computing problems.
- 2. Prepare students who can define, plan, implement and test a medium-sized software project using appropriate software engineering processes, methods and techniques.
- 3. Prepare students to effectively communicate their ideas in written and electronic form, and prepare them to work collaboratively in a team environment.
- 4. Prepare students with a theoretical software engineering background and applied research needed to enter a doctorate program in software engineering.

Structure of the MSSE program

The program is spread over four semesters according to the following structure. The 6-credit hour thesis is mandatory.

Category	Credit Hours	Description
Core Courses	09	Three core courses are compulsory. A list of core
		courses is designed based on latest trend in this
		discipline as per the HEC criteria which will be
		offered to students in the whole duration. Students
		will be required to follow the semester plan as
		given in this prospectus. In case there is any
		change in the plan, the Institute will inform all
		students about it.
Domain Elective Courses	06	A number of specialization/major areas have
		been identified. Relevant courses for each
		specialization area are listed.
General Elective Courses	09	Students will be required to complete their credit
		hours from the chosen area.
Thesis	06	Intensive research to be conducted in this course.
		The University encourages Master students to
		publish their research work at international
		forums.
Paper Publication/	0	All students will be required to get published one
Presentation		research paper from their thesis in HEC
		recognized journal or give presentation in any
		national conference/workshop during the entire
		degree program.

Internal Presentation	0	All students will be required to give internal presentation in their research group during the entire degree program.
Total	30	MPhil degree is awarded after successfully completion of all of the above requirements.

MSSE (Semester Plan)

The MSSE degree programme is divided into four semesters as follows.

Code	Course Title	CrHr	Pre- Req	Code	Course Title	CrHr	Pre-Req
Year 1 Semester I			Year 1 Semester	r II			
		3(3+0)	None		Software Testing and	3(3+0)	
	Advanced Requirements				Quality		
SE501	Engineering			SE541	Assurance		
	Advanced Software	3(3+0)	None	CD***		3(3+0)	
SE511	System Architecture			SE····	Domain Elective – II		
SE***	Domain Elective – I	3(3+0)	None	SE***	General Elective – I	3(3+0)	
Year 2 Semester III			Year 2 Semester	rIV			
CS***	CS Elective – II	3(3+0)					
CS***	CS Elective – III	3(3+0)		SE699	MS Research	-	6(0+6)
SE699	MS Research	6(0+6)		Contd:			

Core Courses (09 CrHr):

The following courses are the core courses which are compulsory for every student to registered in MSSE degree programme. Students are required to study all these courses.

Code	Title	Pre-Requisite	CrHr
SE501	Advanced Requirements Engineering	SE501	3(3+0)
SE511	Advanced Software System Architecture	SE511	3(3+0)
SE541	Software Testing and Quality Assurance	SE541	3(3+0)

Domain Specific Technical Elective Courses (Student will be required to take -2 courses) 06 CrHr

Code	Title	Pre- Requisite	CrHr
SE512	Software Measurement and Metrics	None	3(3+0)
SE631	Component Based Software Engineering	None	3(3+0)
SE513	Advanced Formal Methods	None	3(3+0)
CS568	Advance Human Computer Interaction	None	3(3+0)
SE514	Agile Software Development Methods	None	3(3+0)
SE515	Empirical Software Engineering	None	3(3+0)
SE521	Advanced Software Project Management	None	3(3+0)

General Technical Elective Courses (Student will be required to take -3 courses) 09 CrHr

Code	Title	Pre- Requisite	CrHr
SE621	Software Risk Management	None	3(3+0)
CS601	Research Methodology	None	3(3+0)
SE622	Software Configuration Management	None	3(3+0)
SE641	Reliability Engineering	None	3(3+0)

SE632	Complex Networks	None	3(3+0)
SE611	Agent Based Modeling	None	3(3+0)

Thesis/Research: (6 CrHr)

Code	Title	Pre- Requisite	CrHr
SE699	MS Research Report	None	6(0+6)

PhD Computer Science programme

IoC offers a very strong PhD programme in various areas of computer sciences. This section briefly discusses the structure and courses of the PhD programme.

The IoC expects that all the students admitted to PhD studies must perform well during their enrollment as PhD students. In order to maintain a good standing, all students are required to perform satisfactorily during various stages such as course work, comprehensive examination and thesis proposal defense. Finally, admission to candidacy requires the students to demonstrate their evidence of research ability in the thesis proposal defense conducted by the university. The key programme activities are expected to be completed as per HEC guidelines for PhD degree programme.

For detailed information, the candidates for admission in PhD programme are required to visit the official website and contact admission office for the latest rules and regulations regarding PhD programme.

Programme Structure

Students will be required to complete 18 credit hours course work as per the HEC guidelines. The course work will be followed by Research Thesis.

Category	Credit Hours	Description
Elective Courses	18	A number of specialization/major areas have been identified. Relevant courses for each specialization area are listed. Students will be required to complete their credit hours from the chosen area. 9 credit hours should be from specialization.
Non-Credit Hour	0	A PhD student must pass two non-credit courses (6 Credit hours) selecting from offered courses for under graduate/graduate programme in the university.
Comprehensive Examination	NA	A PhD student will be required to pass comprehensive examination after successful completion of course work and before submitting research proposal.
Paper Publication	NA	A PhD student will be required to get published one research paper from his/her thesis in HEC recognized journal during the entire degree program.
Presentation	NA	A PhD student will be required to publish and present one research paper in national/international conference.
Thesis	06	Intensive research to be conducted in this course. The University encourages PhD students to publish their research work at international forums.
Total	24	PhD degree is awarded after successfully completion of all of the above requirements.

PhD Computer Science (Semester Plan)

The PhD degree programme is divided into six semesters as follows.

Code	Course Title	CrHr	Pre-Req	Code	Course Title	CrHr	Pre-Req
Year 1 Semester I			Year 1 Semester	·II			
CS***	CS Elective – I	3(3+0)	None	CS***	CS Elective – III	3(3+0)	None
CS***	CS Elective – II	3(3+0)	None	CS***	CS Elective – IV	3(3+0)	None
XXX***	Non Credit Course - I	0(3+0)	None	XXX***	Non Credit Course - II	0(3+0)	None
					·		
Year 2 Semester III			Year 2 Semester	· IV			
CS***	CS Elective – V	3(3+0)	None	CS001	Thesis	$\epsilon(0 \mid \epsilon)$	Nama
CS***	CS Elective – VI	3(3+0)	None	C3991	Thesis	0(0+0)	INOILE
			Comprehensive	Examination			
Year 3 Semester V		Year 3 Semester	·VI				
CS999	Thesis	6(0+6)	None	CS999	Thesis	6(0+6)	None
				Continued			

Elective (Student will be required to take – 6 courses) 18 CrHr

Cada	T:41-	Pre-	
Code	The	Requisite	CrHr
CS711	Cluster and Grid Computing	None	3(3+0)
CS712	High Performance Computing	None	3(3+0)
CS741	Advance Topics in Semantic Web	None	3(3+0)
CS764	User Interface Design in Global Perspectives	None	3(3+0)
CS766	Knowledge Representation	None	3(3+0)
CS767	Computational Linguistics	None	3(3+0)
CS768	Statistical Natural Language Engineering	None	3(3+0)
CS769	Knowledge Based System Design	None	3(3+0)
CS765	Parsing Technologies	None	3(3+0)
CS862	Information Foraging	None	3(3+0)
CS863	Recommender Systems	None	3(3+0)
CS866	Computational Intelligence	None	3(3+0)
CS867	Speech Processing Techniques	None	3(3+0)
CS868	Advance Information Retrieval	None	3(3+0)
CS771	Mobile Adhoc Networks	None	3(3+0)
CS772	Wireless Mesh Networks	None	3(3+0)
CS776	Wireless Sensor Networks	None	3(3+0)
CS777	Advance Networking	None	3(3+0)
CS778	Advance Wireless Network Security	None	3(3+0)
CS779	Advance Wireless Networks	None	3(3+0)
CS875	Mobile Communication Systems	None	3(3+0)
CS876	Information and Coding Theory	None	3(3+0)
CS877	Traffic Control and Quality of Services	None	3(3+0)

Thesis/Research: (6 CrHr)

Code	Title	Pre- Requisite	CrHr
CS999	Thesis	None	6(0+6)

Undergraduate Core Courses (Description and Contents)

Course Code	CS102
Course Title	Programming Fundamentals
Cr Hrs	4 (3+1)
Pre-requisite	Nil
Recommended Texts	 Starting Out with C++ from Control Structures to Objects, Tony Gaddis, 9th Edition, 2017, ISBN-13: 978-0134498379, ISBN-10: 0134498372 The C++ Programming Language, Bjarne Stroustrup, Edition 4, Addison-Wesley, 2013, ISBN: 0133522857, 9780133522853. C++ programming cookbook Herb Schildt's C++ programming cookbook / C++ (Computer program language), Schildt, Herbert. To produce programmers equipped with an understanding of fundamental computational concepts underlying most programming languages. The role of programming within the overall software development and appropriate attitudes and working practices for a professional programmer and skills supporting. The solution of small problems using a programming language &clear expression of solutions at different levels of abstraction.McGraw-Hill, New York: c2008. ISBN-9780071488600
Course Description	As part of this course, students will be introduced to programming concepts and techniques. They will analyze and design programs using primitive
	statements of C/C++ for a wide variety of problems in math, science, financials, and games.
Course Objectives	 To produce programmers equipped with an understanding of fundamental computational concepts underlying most programming languages. The role of programming within the overall software development and appropriate attitudes and working practices for a professional programmer and skills supporting. The solution of small problems using a programming language &clear expression of solutions at different levels of abstraction.

Lecture Number	Торіс
W1	Introduction to Programming Concepts Higher-level language Vs low-level language Vs Object code Role of compiler, interpreter and assembler
W2	An example C++ program and its flow of control Preliminary Remarks about Program Style

W3	Understanding Data type and constant Variables and rules of declaration
W4	Working with arithmetic expression Identifiers, Integers, Real numbers, Type Casting, ,Characters
W5	Combing operation with assignment operator Boolean Expressions and Operators
W6	Basic C++ language statements and functions Boolean Expressions and Operators
W7	If and if else statements with examples Multiple Selection and Switch statement
W8	Conditional operator AND, OR etc Loop Statements FOR loop
W9	While loop with examples Do while loop with examples and difference between do and while loop. Arrays and Strings: The Basic Idea and Notation
W10	Declaring an array and initializing array Assignment Statements and Expressions with Array Elements. Arrays as Parameters in Functions.
W11	Sorting Arrays with examples Two-dimensional Arrays Strings, The Sentinel String Character '\0'
W12	Functions and Procedural Abstraction: The Need for Sub-programs, User-defined Functions with examples
W13	Value and Reference Parameters Recursion: The Basic Idea, A Simple Example, The Mechanics of a Recursive Call, Recursion and Iteration
W14	Introducing Pointers, Declaring Pointers, Pointers and memory address, Assignments with Pointers Using the Operators "*" and "&"
W15	Dynamic Arrays, Local Vs global variables, Automatic and Dynamic Variables
W16	Basic Sorting Algorithms

Course Code	CS213	
Course Title	Object Oriented Programming	
Cr Hrs	4 (3+1)	
Pre-requisite	CS102 (Programming Fundamentals)	
Recommended Texts	1. Object-oriented programming in C++, Tatyana Sopronyuk,	
	NonnaShulga, CreateSpace Independent Publishing Platform; 1	
	edition (September 26, 2014), ISBN: 978-1502520906	
	2. Microsoft Visual C# 2015: An Introduction to Object-Oriented	
	Programming 6th Edition , Joyce FarrellCengage Learning	
	Publisher ;6 edition (June 3, 2015), , ISBN: 978-1285860237.	
	3. C++ How To Program: Dietel&Dietel, Harvey & Paul, Prentice	
	Hall, 10th Edition, 2017, ISBN-13: 9780134448848.	
Course Description	This course gives you a thorough grounding in the basics of Object	
_	Orientation i.e. Abstraction, Polymorphism, Inheritance, Encapsulation	
	and other related concepts. Students will learn about these concepts in a	

	C++ development environment. It will also give you knowledge about C++ Class and Template Constructs.	
Course Objectives	• The course aims to focus on OOP concepts, analysis and software development.	

Lecture No	Торіс
W1	Basic Concepts
	Introduction to OOP, History
	Introduction to basic features (Classes, objects, inheritance, polymorphism)
W2	Overloading, data hiding / encapsulation
W3	Class Example
	Declaring class, Member functions and data
	Using class
W4	Constructor, Destructor
	Overloaded constructor, default copy constructor
W5	Overloading unary operators, Overloading binary operators
W6	Arithmetic operators, concatenating strings
	Comparison operators, arithmetic assignment operator
W7	Data type conversion
	Conversion among basic data types and objects to basic data types
	Derived class and base class
W8	Derived class constructor
	Overriding member functions
W9	Multiple inheritance
W10	Address of operator
	Indirection operator
	Pointers and arrays
W11	Pointers and functions
	Function Declaration, Definition, Calling
W12	Passing arguments to functions
	Inline functions
	Function overloading
W13	Virtual functions
	Early and late binding
W14	Abstract classes and pure virtual functions
	Friend functions
W15	Function Overriding
W16	Practical projects including complete oop concept

Course Code	CS211
Course Title	Data Structures & Algorithms
Cr Hrs	4 (3+1)
Pre-requisite	None

Recommended Texts	1. Data Structures and Algorithms Made Easy: Data Structures and			
	Algorithmic Puzzles, Fifth Edition Paperback, Narasimha			
	Karumanchi, Career Monk Plublications; 5 edition (August 28,			
	2016), ISBN: 978-8193245279			
	2. Data Structures and Algorithms in Java 6th Edition by Michael T.			
	Goodrich ,Roberto Tamassia , Michael H. Goldwasser , Wiley 6			
	edition (January 28, 2014), ISBN: 978-1118771334			
	3. Data Structures and Algorithms in C++, Adam Drozdek, 2012,			
	ISBN-13: 978-1133608424			
Course Description	The course will cover well-known data structures such as dynamic arrays,			
	linked lists, stacks, queues, tree, heap, disjoint sets and table			
Course Objectives	Three goals will be accomplished:			
	• Implement these structures in C++			
	 Determine which structures are appropriate in various situations 			
	• Confidently loarn new structures havend what's presented in this			
	• Confidentity rear new structures beyond what's presented in this			
	class.			

Lecture Number	Торіс
W1	Definitions (Data, Entity, information, Data types, Built in Data types, ADT,
	pointers in C), Concept of Data Structure, Overview of Data Structure
	Algorithm: Simple and Complex, Components of an Algorithm: introduction,
	Start/End, Statements: Executable and non-executable
W2	Flowcharts, Control Structure(Sequential, Conditional, Loops)&Linear DS
	and Non Linear DS
W3	Function Sub Algorithm, Procedure Sub Algorithm
	ARRAYS Definition, One dimensional Array, Memory Allocation for an Array
	Traversing in a Linear Array, Searching in a Linear Array
W4	Insertion in a Linear Array, Deletion in a Linear Array
	Two Dimensional Arrays, Sparse Matrices, Pointer Arrays
	Linear Search, Binary Search
W5	LINKED LISTS Definition, Single Linked List, Operation on a Single Linked
	List
	Creating a Single Linked List(Algorithm), Accessing a Single Linked
	List(Algorithm)
W6	Insertion into a Single Linked List(Algorithm)
	Deletion into a Single Linked List(Algorithm)
	Searching into a Single Linked List(Algorithm)
W7	Circular Linked List: Insertion into a Circular Linked List(Algorithm),
	Deletion into a Circular Linked List(Algorithm), Searching into a Circular
	Linked List(Algorithm)
	Double Linked List: Accessing a Double Linked List(Algorithm), Insertion
	into a Double Linked List(Algorithm), Deletion into a Double Linked
	List(Algorithm)
W8	STACK Introduction, Definition, Representation of stack
	Operation on Stack PUSH and POP (Algorithms)
	Converting an infix notation to postfix (Algorithm) and example
1	

W9	Evaluation of Arithmetic Expression from postfix notation(Algorithm) and example
	SORTING Bubble Sort (Algorithm)
	Ouick Sort (Algorithm)
	Quick Soft (Algorithm)
	Insertion Sort(Algorithm)
	Selection Sort(Algorithm)
W10	QUEUES Introduction, Definition, Representation of Queues
	Insertion and Deletion in Oueue
	Deque, Priority Oueue
	TREES Binary Tree Terminologies
W11	
	Representation of Binary Tree: Using Linked List, Sequential Representation
	Operation On Binary Tree, Preorder
	Inorder Traversing
W12	
	Post Order Traversing
	Insertion, Deletion, Searching
W12	Constructing binary tree from arithmetic Expressions
w15	CDADUS Creat terminal arise and Democratation of Create
	GRAPHS Graph terminologies and Representation of Graphs
W14	Operation On graphs
W15	Adjacency Matrix ,Adjacency List
W16	<u>RECURSION</u> Basic of Recursion, Tower of Hanoi, Fibonacci Series.

	00010
Course Code	CS212
Course Title	Operating Systems Concepts
Cr Hrs	4(3+1)
Pre-requisite	CS211 (Data Structures & Algorithms)
Recommended Texts	 Operating Systems: Internals and Design Principles (8th Edition), William Stallings, Pearson; 8 edition (February 2, 2014), ISBN: 978-0133805918. Operating System Concepts, AviSilberschatz, Peter Baer Galvin, Greg Gagne, John Wiley & Sons, 2004, ISBN- 9780471364146 978-0-471-36414-6.
	 Operating System Design: The Xinu Approach, Douglas Comer, 2015, ISBN-13: 978-1498712439
Course Description	This course gives you the overview on operating system in general and how different activities and problems are being handled by it. Different algorithms and techniques are introduced to students for handling different operations within OS
Course Objectives	 Build an understanding of the fundamental concepts of operating system. Letting students understand the main techniques and algorithms being implemented for handling different issues in operating system

Lecture No.	Торіс
W1	Introduction: Operating System History & Evolution, Types of operating system (Batch, Real Time, Time Sharing, Single use, Multi-user)
W2	Process Concepts: Definition of Process, Process States, State Transitions, 2-State,3- State & 5-State Models & PCB
W3	Scheduling: Scheduling Definition, Scheduling levels (High Level, Mid-Level, Low Level)&Types of Scheduling (Preemptive, Non Preemptive)
W4	Scheduling Policies (FIFO, Round Robin, SJF, SRT, HRN)
W5	Parallel Processing: Definition, A Control Structure for Indicating Parallelism: Para begin/Para end, Mutual Exclusion & Critical Section
W6	Software Solutions to Mutual Exclusion (Dekker's Algorithm, Peterson's Algorithm)
	Hardware Solution to Mutual Exclusion (Test and Set Instruction)
W7	Inter process Communication
	Message Passing (Mailboxes & Ports, Pipes, remote Procedure Calls)
W8	Deadlock: Introduction, Example of Deadlock, Resource Concepts & Necessary Conditions for Deadlock
W9	Deadlock Prevention, Deadlock Avoidance
	Deadlock Detection, Deadlock Recovery
W10	Real Storage: Storage Organization, Storage Management, Storage Hierarchy,
W11	Storage Management Strategies (Fetch Strategies, Placement Strategies, Replacement Strategies)
W12	Contiguous VS Noncontiguous Storage Allocation, Fixed Partition Multiprogramming (Absolute Translation & Loading, Relocatable Translation & Loading, Protection, Fragmentation)
W13	Variable Partition Multiprogramming (Coalescing Holes, Storage Compaction, Storage Placement Strategies), Swapping
W14	Virtual Storage: Basic Concepts, Block Mapping, Paging
	Paging Address Translation with Direct Mapping, Paging Address Translation with Associative Mapping, Paging Address Translation with Combined Associative/ Direct Mapping
	Segmentation: Segmented Address Translation by Direct Mapping, Dynamic Address Translation in Paging/ Segmentation Systems
W15	Virtual Storage Management: Virtual Storage Management Strategies (Fetch Strategies, Placement Strategies, Replacement Strategies), Page Replacement Strategies (Principle of Optimality, Random Page Replacement, First-in-first-out, Least-Recently-used, Least-Frequently-Used, Not-Used-Recently, Demand Paging

W16	File System: File System Basics, File System Functions, Data Hierarchy, File
	Organization (Sequential, Direct, Indexed Sequential, Partitioned).

Course Code	CS222
Course Title	Database Management Systems
Cr Hrs	4 (3+1)
Pre-requisite	CS211 (Data Structures & Algorithms)
Recommended Texts	1. Fundamentals of Database Systems, Ramez Elmasri, 2015, 7th
	Edition, Pearson publishers, ISBN-10: 0133970779,
	ISBN-13: 978-0133970777
	2. Database Systems: Design, Implementation, & Management,
	Carlos Coronel; Steven Morris, 2014, 11th Edition, Course
	Technology, ISBN-10: 1285196147, ISBN-13: 978-1285196145.
	3. Database Systems: A Practical Approach to Design,
	Implementation, and Management, Thomas Connolly, Carolyn
	Begg, 2014, 6th Edition, ISBN-10: 0132943263, ISBN-13: 978-
	0132943260
Course Description	Investigates how database management system techniques are used to
	design, develop, implement and maintain modern database applications in
	organizations.
Course Objectives	The main objective of this course is to
	• Introduce students to fundamentals of database technology by
	studying databases from three viewpoints: those of the database
	user, the database designer, and the database administrator.
	• It teaches the use of a database management system (DBMS) by
	treating it as a black box, focusing only on its functionality and its
	interfaces.

Lecture Number	Торіс
W1	Introduction to Database Systems The relational model: Relational algebra and relational calculus, The SQL language
W2	Database application development Conceptual database modeling using the entity-relationship model
W3	Schema quality through the study of functional dependencies and normalization
W4	Database transactions, Physical database design and tuning
W5	Concurrency and Serializability Database security
W6	Analytics and data warehousing
W7	Map Reduce
W8	NoSQL systems
W9	Database Security / Distributed Database
W10	Transaction & Concurrency
W11	Normalization. 1NF, 2NF, 3NF, BCNF

W12	SQL DDL Statements, SQL DML Statements, SQL DCL Statements
W13	Introducing and Working on SQL Server, SQL Form Designing
W14	SQL Server Report Generation
W15	Connecting SQL Work Bench with NetBeans, Working with SQL
	workbench queries
W16	SQLite for Mobile Systems

Course Code	CS251
Course Title	Software Engineering
Cr Hrs	3 (3+0)
Pre-requisite	CS101 (Introduction to Computing)
Recommended Texts	1. Software Engineering: A Practitioner's Approach, Roger s.
	Pressman, Bruce Maxim, 8 th Edition, 2014, McGraw-Hill
	Education, ISBN-10: 0078022126, ISBN-13: 978-0078022128.
	2. Software Engineering, Ian Sommerville, 10 th Edition, 2015,
	Addison Wesley, ISBN-10: 0321210263, ISBN-13: 978-
	0321210265.
	3. Beginning Software Engineering, Rod Stephens, 1 st Edition,
	2015, ISBN-10: 8126555378, ISBN-13: 978-8126555376.
	4. The Complete Software Developer's Career Guide: How to
	Learn Programming Languages Quickly, Ace Your
	Programming Interview, and Land Your Software Developer
	Dream Job, John Sonmez, 2017, Simple Programmer, LLC.
	5. Essentials of Software Engineering, Frank Tsui and Orlando
	Karam, 2016, 4 th Edition, Jones & Bartlett Learning, ISBN-10:
	1284106004, ISBN-13: 978-1284106008.
Course Description	Software development is the practice of organizing the design and
	construction of software, the beating heart of much technology
	fundamental to our personal and professional life. This free introductory
	course, An introduction to software development, discusses the
	fundamental practices which have developed to meet them. Software
	development is a fast-moving discipline and as a software development
	professional you must be able to track its leading edge. The course also
	teaches you some fundamental skills to help you interact with the growing
	published academic and professional literature on the subject.
Course Objectives	appreciate the engineering nature of software development
	To describe key activities in software development and the role of modelling
	explain key concepts in software development such as risk and quality
	explain key concepts in software development such as risk and quanty explain the basics of an object-oriented approach to software development
	To describe a simple workflow for interacting with the published literature
	on software development.

Lecture Number	Topics

Г

W1	Introduction to software development, the discipline concerned with the methods, techniques and processes of building software artefacts.
W2	Software development as engineering
W3	Software Development Process: Analysis, Design
W4	Implementation, Testing, Deployment.
W5	Software development difficulties: A philosophical perspective, A historical perspective
W6	Risk: Risk management, Risk Analysis.
W7	Quality: Functional fitness, Usability
W8	Flexibility, Testability, Reusability,
W9	Modeling and the UML: Domain modeling.
W10	Specification modeling
W11	Design modeling
W12	Object orientation: Modeling with objects
W13	Programming with objects
W14	Finding and reading academic articles.
W15	A workflow for reading the academic literature: Preparation, Discovery, Assimilation, Recording, Relating.

Course Code	C\$371
Course Title	Data Communication and Computer Networks
Cr Hrs	4 (3+1)
Pre-requisite	CS101(Intro. to Computing)
Recommended Texts	 Data Communications and Computer Networks: A Business User's Approach, Curt White, Edition 8, Cengage Learning, 2015, ISBN: 1305465245, 9781305465244 Data Communication and Networking, Behrouz A. Ferouzan, 5th Edition, McGRAW-HILL, 2012, ISBN-10: 0073376221 ISBN-13: 978-0073376226. Data and Computer Communication, William Stallings, 10th
	Edition, Prentice Hall, 2013, ISBN-10: 0133506487, ISBN-13: 978-0133506488.
Course Description	This course gives you the overview about, What Data Communication actually is? What tools and techniques you will use to send your data from one place to another. Similarly, all about the techniques, devices and concepts of data sending and receiving activities will be covered in this course
Course Objectives	 Build an understanding of the fundamental concepts of computer networking. Familiarize the student with the basic taxonomy and terminology of the computer networking area &Introduce the student to advanced networking concepts, preparing the student for entry Advanced courses in computer networking. Allow the student to gain expertise in some specific areas of networking such as the design and maintenance of individual networks.

Lecture Number	Торіс
W1	Introduction to Data comm. Peer to Peer vs. Client-Server Based Networking, Networking Topologies (Bus, Ring, Star and Mesh Topologies),
W2	Sizes of Networks (LANs, MANs and WANs)
W3	Network Models, Signals Digital and Analog Data Transmission, Transmitter, Receiver, Medium and Transceiver
W4	 Broadcast vs. Point to Point Communication, Directional and Omni Directional Communication, Modes of Communication (Simplex, Half Duplex and Full Duplex) Types of Transmission (Asynchronous and Synchronous Transmission), Transmission Impairments (Attenuation, Distortion, Noise)
W5	Media: Bounded Media, Coaxial Cable, Twisted Pair (Shielded and Unshielded), Optical Fiber, Unbounded Media, Radio Waves, Microwave, Infrared, Satellites
W6	OSI Reference Model: Seven Layers of OSI model
W7	TCP/IP Layers: Five Layers of TCP/IP Multiplexing: Frequency Division Multiplexing, Time Division Multiplexing, Synchronous TDM & Statistical TDM
W8	Switching: Circuit switching, Space Division Circuit Switching, Time Division Circuit Switching, Packet Switching, Datagram Packet Switching & Virtual Circuit Packet Switching
W9	Data Encoding: Digital Encoding, NRZL, NRZI, Manchester and Differential Manchester, Analog Encoding, Amplitude Frequency and Phase Shift Keying Direct Link Networks: Error Detection and Correction, Two Dimensional Parity, Cyclic Redundancy Check& Hamming Codes
W10	Flow Control, Stop & Wait ARQ, Sliding Window Algorithm Error Control, Stop & Wait ARQ, Go Back N ARQ & Selective Reject
W11	Ethernet (IEEE 802.3), Physical Properties, Frame Format & Addressing Token Ring (IEEE 802.5): Physical Properties, Frame Format, Token Algorithm, Monitor Election and Responsibilities of Monitor
W12	FDDI: Physical Properties, Frame Format, Token Algorithm Wireless LAN (802.11): Physical Properties, Distribution System, Hidden Nodes Problem & Exposed Nodes Problem.
W13	Internetworking: Internet Protocol, IPV4, Frame Format, Segmentation and Reassembly, IPv4, Sub netting and CIDR&IPv6
W14	<i>End to End Issues</i> : Transmission Control Protocol, Connection Establishment Connection Termination, TCP State Transition Diagram &User Datagram Protocol
W15	Connecting LANs
W16	Network Programming

Course Code	CS372
Course Title	Information Security
Cr Hrs	3 (3+0)
Pre-requisite	CS371(Data Communication and Computer Networks)

Recommended Texts	 Principles of Information Security, 2015 4th Edition by Michael E. Whitman and Herbert J. Mattord. Computer Security: Art and Science, Matthew Bishop, 2018, 2nd Edition, ISBN-10: 0321712331, ISBN-13: 978-0321712332 Cryptography and Network Security by William Stalling 7th Edition, 2015
Course Description	This course is intended to help students gain fundamental and comprehensive understanding of information security. We will focus on an overview of major information security issues, technologies, and approaches. Students who successfully complete this course will have a concept and knowledge of security properties, concerns, policies, models, cryptography, PKI, firewalls, security evaluation, and real-life security cases. Students will also have hands-on experience in selected information security technologies through lab sessions.
Course Objectives	 To provide an understanding of principal concepts, major issues, technologies, and basic approaches in information security. To provide concept-level hands-on experience in specific topic area. To provide the ability to examine and analyze real-life security cases.

Lecture Number	Торіс
W1	Introduction and Overview of Information Security Understanding the Threats: Malicious software, Viruses, trojans, rootkits, worms, botnets.
W2	Memory exploits (buffer overflow, heap overflow, integer overflow, format string)
W3	Formalisms: Access control theory, access control matrix, Information flow), Policies: Security policies, Confidentiality policies (BLP model),
W4	Integrity policies (Biba, and Clark-Wilson model), Hybrid policies (Chinese Wall model, role-based access control)
W5	Cryptography Block and stream ciphers, Cryptographic hash functions., Message Authentication Codes (MAC), Public and private key systems, Message digests. Approximate strength of ciphers, Authentication, Password system.
W6	Systems Secure design principles (Least-privilege, fail safe defaults, complete mediation, separation of privilege.
W7	TCB and security kernel construction, System defense against memory exploits
W8	UNIX security and Security-Enhanced Linux (SELinux), Windows security.
W9	Network Security: TCP/IP security issues, DNS security issues and defenses, TLS/SSL. Network Intrusion detection and prevention systems ,Firewalls.
W10	Software Security: Vulnerability auditing, penetration testing, Sandboxing, Control flow integrity.
W11	Web Security: User authentication, authentication-via-secret and session management.

W12	Cross Site Scripting, Cross Site Request Forgery, SQL Injection.
W13	database security
W14	host- based and network-based security issues, operational security issues, physical security issues; personnel security electronic voting
W15	classification and trust modeling; risk assessment, IDS
W16	Legal and Ethical Issues: Cybercrime and computer crime, Intellectual property, copyright, patent, trade secret, Hacking and intrusion, Privacy, identity theft.

Course Code	CS131			
Course Title	DIGITAL LOGIC AND DESIGN			
Cr Hrs	3 (3+0)			
Pre-requisite	Nil			
Recommended Texts	1. Digital Logic and Computer Design, M. Morris Mano, prentice			
	hall publisher, 2015, ISBN-13: 978-0132145107			
	2. Digital Computer Electronics, Albert P. Malvino, Jerald A			
	Brown, Career Education publisher, 2015, ISBN-13: 978-			
	0028005942			
	3. Digital Computer Electronics, Malvino Brown, 4th Ed, Career			
	Education Inc, 2010, ISBN-10: 0028005945, ISBN-13: 978-			
	0028005942.			
	4. Digital Logic Design: A Rigorous Approach, Guy Even, Ist Ed,			
	Cambridge University Press, 2012, ISBN: 978-1107027534.			
Course Description	This course provides a modern introduction to logic design and the basic			
-	building blocks used in digital systems, in particular digital computers. It			
	demonstrates knowledge of practical aspects of digital components			
	including setup and hold time in flip-flops and fan-in, fan-out, and noise			
	margin in logic gates. Create minimal realizations of single and multiple			
	output Boolean functions. Design and analyze combinational circuits			
	logic units Demonstrate knowledge of clocking issues within			
	synchronous systems: Demonstrate knowledge of hazards and race			
	conditions generated within asynchronous FSMs			
Course Objectives	A student who successfully fulfills the course requirements will have			
, v	demonstrated:			
	An ability to define different number systems, binary addition and			
	subtraction, 2's complement representation and operations with this			
	representation.			
	• An ability to understand the different switching algebra			
	theorems and apply them for logic functions.			
	• An ability to define the Karnaugh map for a few variables and			
	perform an algorithmic reduction of logic functions.			
	• An ability to define the following combinational circuits: buses,			
	encoders/decoders, (de)multiplexers, exclusive-ORs,			
	comparators, arithmetic-logic units; and to be able to build			
	simple applications.			
	• An ability to understand the bits table element and the different			
	latches and flip-flops.			
Lecture Number	Topics			
----------------	---	--	--	--
W1	Digital concepts:			
	Number Systems			
W2	binary arithmetic			
	binary codes			
	error detection and correction			
W3	parity check methods			
	Combinational logic: Pulsed operation and troubleshooting of gate networks			
W4	Applications of combinational logic in different logic functions and their			
	troubleshooting			
W5	Flip-flops and related devices			
W6	Operating characteristics, basic applications and troubleshooting			
W7	Counters: Different types of counters			
	design of sequential circuits, applications and troubleshooting of counter			
	circuits, symbols and dependency notations			
W8	Shift Registers: Different types of shift register, their application and trouble			
	shooting			
	symbols and dependency notations			
W9	Memories and Programmable Logic Devices: Memory concepts, types of			
	memory			
W10	Programmable Logic Devices, testing and troubleshooting			
W11	Integrated Logic Circuit Technologies: Basic operational circuit parameters			
W12	data sheet interpretation			
	TTL circuits, practical considerations in the uses of TTL			
W13	CMOS circuits, comparison of CMOS and TTL characteristics, interfacing			
	logic families			
W14	ECL circuits, I2L circuits, PMOS and NMOS			
W15-W16	Laboratory:			
	Construction of logic gates using discrete components, study of characteristics			
	of digital integrated circuits, design and construction of different types of			
	ahead carry adders comparators decoders encoders multiplexers de-			
	multiplexers, Parity generators/checkers, different type of sequential circuits			
	and their troubleshooting. Design, construction and study of different types of			
	flip-flops and their troubleshooting. Comparatives study of digital ICs of			
	different technologies and their mutual interfacing			

Course Code	CS311
Course Title	Theory of Automata
Cr Hrs	3 (3+0)
Pre-requisite	None
Recommended Texts	 An Introduction to Formal Languages and Automata 6th Edition, Peter Linz Jones & Bartlett Learning publisher (January 26, 2016), ISBN: 978-1284077247 Compiler Construction Using Java, Javacc And Yacc, Anthony J Dos Reis WIEEECS Publisher, 1 edition (2015), ISBN: 978- 8126556182 Theory of Automata, Alban Andahi, 2018, Createspace Independent Publishing Platform, ISBN-10: 1985742446
	ISBN-13: 978-5742444 4. Compilers: Principles, Techniques, and Tools, Alfred V. AhoMonica S. LamRaviSethiJeffrey D. Ullman, Addison Wesley, 2006 ISBN-978-0321486813
Course Description	This is an introductory course on Theory of Automata and Compiler Construction. Students are introduced to the concept of Formal Language and Automata. In Automata they learn about finite automata (deterministic; non-deterministic), transition graphs and pushdown automata (deterministic; non-deterministic). The course also introduces the students to the operation of a modern compiler that translates code in a programming language into machine code. However, due to the introductory nature of the course, we will spend majority of the time on syntax analysis and code generation.
Course Objectives	 To introduce concepts in automata theory and identify different formal language classes and their relationships Design grammars and recognizers for different formal languages To prove and disprove theorems in automata theory using its properties. To know the working of compiler and to enable the students to learn different programming techniques in constructing a compiler.

Lecture No	Торіс
W1	Introduction
	Terminologies of Languages
	Operations on languages
W2	Descriptive definition
	Examples using Descriptive definition
	Recursive Definition
W3	Regular Expressions(RE)
W4	Finite Automaton(FA)

W5	Non- Deterministic Finite Automata- NFA
	Conversion of NFA to DFA
	Union of Two Fas
WC	Constantion of True For
Wb	Concatenation of Two Fas
	Transition Table
	Transition Graph-1G
W7	Generalize Transition Graph- GTG
	Context Free Grammar-CFG
W8	Designing Context Free Grammar ,Chomsky Normal Form
W9	Context Sensitive Languages ,Context Sensitive Grammars
W10	Tree
	Ambiguity
	Pushdown Automata
W11	Introduction to Passes of a Compiler
	Text Processing
	Parsing
W12	Specification of Tokens, Recognition of Tokens
	Top-down Parsing
	Predictive Parsing
W13	Lexical Analysis
	Specification of Token
	Recognition of Token
W14	Lexical Generator
	Syntax Analysis
	Intermediate Generation of Codes
W15	Translation of Expressions
	Type Checking
W16	Code Generation

Course Code	C8233
Course Title	Computer Organization and Assembly Language
Cr Hrs	4 (3+1)
Pre-requisite	CS131 (Digital Logic And Design)
Recommended Texts	 Computer Organization and Design, David A. Patterson, John L. Hennessy, Morgan Kaufmann publisher, 2016, ISBN-13: 978- 0124077263
	 Principles of Computer Organization and Assembly Language, Patrick Juola, Pearson publisher, 2015, ISBN-13: 978-0131486836 Assembly Language for Intel-based Computers, Kip R. Irvine, 5th Ed. Prentice Hall Publishing, 2006, ISBN: 978-0130910134
	 Computer Organization Assembly Language, Micheal Thorne, 2nd Ed, Addison Wesley, 1991, ISBN: 978-0805368796. Professional Assembly Language, Richard Blum, 1st Edition, Wrox Publisher, 2005, ISBN: 978-0764579011
Course Description	Computer Organization and Assembly Language is aimed to enable students to study and explore in detail the machine representation of instructions and data using a modern digital computer. This course enables students to study microprocessor addressing and the mechanism behind data movement between memory and microprocessor. Student will also experiment to program interrupts and to perform interrupt driven I/O. Basic machine organization are studied. The course will focus on the most popular Intel 80x86 microprocessor. It is suggested for the benefits of students to use emu8086 emulator for the entire course in order to avoid any compatibility issues that may arise due to the recent advancements in contemporary processors and Operating Systems.
Course Objectives	 The main objectives of this course is to Introduce the organization of computer systems and usage of assembly language for optimization and control. Emphasis should be given to expose the low-level logic employed for problem solving while using assembly language as a tool. At the end of the course the students should be capable of writing moderately complex assembly language subroutines and interfacing them to any high level language.

Lecture Number	Topics			
W1	Introduction to the course.			
	The need to study assembly language			
	Resources (books, assemblers, emulators etc)			
	General concepts about microcomputer, microprocessors			
	 objectives and perspective of assembly language 			
	Instruction execution cycle			
	Reading/writing to memory			
	 programmable CPU registers and their categories 			
	16-bit, 32-bit and 64-bit registers			
W2	Bus and bus types			
	Microprocessors bus Structure			
	Address, data and control lines of a bus			

W3	Memory Organization and Structure			
	Linear and segmented memory models			
W4	Addressing modes			
W5	Introduction to the Assembler and Debugger			
W6	Register programming: Data movement, arithmetic Addressing: Indirect addressing, arrays, Indexed operands, Pointers Flags register: flags description			
W7	Programming various flags			
W8	Program Control Instructions: jump and loop instructions			
W9	Subroutines: run time stack (32-bit)			
W10	Stack operations (push, pop)			
W11	Defining and Using procedure: Call, RET and Proc directives Nested procedure call, passing register arguments to procedures			
W12	64-bit programming			
W13	64-bit addition and subtraction			
W14	Linking to an external library			
	Peripherals Control Interrupts			
W15	Interfacing with High Level Languages			
W16	Course Review, guidelines for final term exam			

Course Code	CS411		
Course Title	Design and Analysis of Algorithms		
Cr Hrs	4 (3+1)		
Pre-requisite	CS211 (Data Structures & Algorithms)		
Recommended Texts	1. An Introduction to the Analysis of Algorithms (2nd Edition), Robert		
	Sedgewick, Philippe Flajolet, Addison-Wesley Professional		
	Publisher (January 28, 2013), ISBN: 978-0321905758		
	2. Practical Analysis of Algorithms (Undergraduate Topics in		
	Computer Science), 4th Edition, Dana Vrajitoru, William Knight,		
	Publisher: Springer (September 15, 2014), ISBN: 978-3319098876		
	3. Introduction to the Design and Analysis of Algorithms, Anany		
	Levitin, 3 rd Edition, 2011, Pearson Publishers, ISBN-10:		
	0132316811		
	ISBN-13: 978-0132316811.		
	4. Analysis Of Algorithms, Jeffrey McConnell, 2007, ISBN-13: 978-		
	0763707828		
Course Description	This course gives student the understanding of the designing aspects of an		
	algorithm. It will also make them grasp the concept of analysis of an		
	algorithm. Student will be provided with real life problems and then will get		
	a walkthrough from designing and analysis phase of its algorithm to better		
	understand. This will help student understand the core concepts and notions.		
Course Objectives	• Provide students with an understanding of the principles and		
	techniques used in the design and analysis of algorithms.		
	• Provide the understanding of the notion of a mathematical proof and		
	some knowledge of elementary discrete mathematics.		

•	Student will analyze a variety of data structures and algorithms
	chosen for their importance and their illustration of fundamental
	concepts.
•	Making student understand the analysis of the worst-case running
	time of an algorithm as a function of input size.

Lecture Number	Topics		
W1	Introduction, Analyzing the worst-case running time of an algorithm as a function of input size		
W2	Asymptotic notations solve recurrence relations		
W3	Divide-and conquer technique		
W4-W6	Understand the concepts of Dynamic programming		
W7-W9	Understand the concepts of Greedy Algorithm		
W10-W13	Understand the concepts of Graph traversing		
W14	Understand the concepts of MST and their algorithms		
W15	Understand the algorithms for computing shortest path		
W16	Understand the algorithms for computing shortest path, Basics of Complexity theory		

Course Code	CS241
Course Title	Web Engineering
Cr Hrs	4 (3+1)
Pre-requisite	CS102 (Programming Fundamentals)
Recommended Texts	 Web Design with HTML, CSS, JavaScript and jQuery Set 1st Edition, Jon Duckett, Wiley, 2014, ISBN-13: 978-1118907443 Web Design All-in-One For Dummies 2nd Edition, Sue Jenkings,
	For Dummies, 2013, ISBN-13: 978-1118404102
	 Head First HTML5 Programming, Eric Freeman and Elisabeth Robson, 2011, ISBN: 978-1-449-39054-9
	4. How to Do Everything with JavaScript, Scott Duffy, 2013, ISBN-
	0-07-222887-3.
	5. A Practical Guide to Designing for the Web, Mark Boulton
	Design, Limited, 2009, ISBN-13: 978-0956174017
Course Description	This course introduces students to basic web design using HTML (Hypertext Markup Language) and CSS (Cascading Style Sheets). The course does not require any prior knowledge of HTML or web design. Throughout the course students are introduced to planning and designing effective web pages; implementing web pages by writing HTML and CSS code; enhancing web pages with the use of page layout techniques, text formatting, graphics, images, and multimedia; and producing a functional, multi-page website.
Course Objectives	Recognize and understand HTML web page elements
	Know how to write HTML code
	Understand and apply effective web design principles
	• Enhance web pages using text formatting, color, graphics, images, and multimedia

•	Incorporate forms into web pages Understand and apply CSS to format web page elements
•	Adding scripting language to add action to HTML.
•	To make the design and contents of a website optimized for search engines called Search Engine Optimization (SEO)

Lecture Number	Торіс
W1	Introduction to the Course, Hyper Text Markup Language (HTML), Setting Environment for HTML (Software) Getting started with tags, HTML Elements ,Paired and Singular Tags, HTML, Head, Title, Body tags, Writing simplest web page, How to save webpage, How to view webpage
W2	HTML Paragraphs, Headings, HTML Attributes, HTML Comments HTML Formatting, Bold, Emphasize, Italic, Underline, Marked, Small, Deleted, Inserted, Subscript, SuperScript, Code, Preformatted, Abbreviation, Quotations, Cite, Address etc
W3	HTML Colors, Standard Colors, RGB Colors, HexaDecimal Colors, Linking Documents Images, Linked Images, HTML Lists, Ordered Lists, Un-Ordered Lists HTML Table
W4	HTML Forms, Form Methods, Form Elements
W5	HTML5 Form Elements Meta Tag, Inline Frames (IFrame)
W6	Div and Span, HTML Media, Video, Audio, Plug-Ins
W7	HTML Graphics, HTML Convas HTML API's, Geolocation
W8	HTML Drag-Drop HTML Local Storage, App Cache
W9	App Cache, HTML Web Workers
W10	Cascaded StyelSheet (CSS), The Style Attribute, CSS Syntax Inlined CSS, Internal CSS, External CSS
W11	CSS Selectors, Tags, Class, Id, Pseudo Selectors, Attribute Selectors, CSS3 Selectors CSS Properties, Font CSS Properties, Text CSS Properties, Setting Size (various units of text size) Background CSS Properties, Border CSS Properties, Links CSS Properties Lists CSS Properties
W12	Box Model in detail, Setting Layout, Using Display, Position, Float, Width, Height CSS properties for setting layout, using Div for Layout Setting Introduction to Responsive Design Responsive Design explained with an example
W13	Introduction to Scripting Languages, Introduction to Javascript, How to add Javascript to HTML InlineJavascript, Internal Javascript, External Javascript Javascript Syntax, Data Types, Variables, Complex Data Types (Arrays, Objects), Operators

W14	Defining Methods in Javascript, Selection Statements in Javascript, Looping in Javascript Event-driven HTML and Javascript RegEx, Javascript Form Validation
W15	JavascriptDebuggingm, Understanding Browser support JS HTML Document Object Model (DOM) JQuery Basics, JQuery in Action, JSON Basics Communicating with Web Server using Javascript
W16	Search Engine Optimization (SEO) Getting website on Internet, understanding how HTTP Works and Request are processed, Understanding the overall cycle of how web works What is Domain Name, Selecting Domain Names, Purchasing Domain Names, Purchasing Hosting Space on Shared Web-Server Uploading files on rented space using FTP, How to bind your domain name with hosting server, Visiting Website Live, How to make money from your website by advertisement

Course Code	C\$363
Course Title	Artificial Intelligence
Cr Hrs	3 (3+0)
Pre-requisite	None
Recommended Texts	 Artificial Intelligence: What Everyone Needs to Know 1st Edition: Jerry Kaplan ,Oxford University Press, 2016, ISBN: 978- 1493682225
	 The Cambridge Handbook of Artificial Intelligence, Keith Frankish, William M. Ramsey, Cambridge University Press, 2014, ISBN: 978-0521691918
	 Artificial Intelligence: A Modern Approach, James Barrat, 2015, 2nd Edition, ISBN-10: 1250058783, ISBN-13: 978-1250058782
	 Introducing Artificial Intelligence (Introducing(Totem)) by Henry Brighton (2004), ISBN-13: 978-1840468410
	5. Artificial Intelligence: A Modern Approach (3rd Ed.), by S. Russell and P. Norvig, Prentice Hall, 2010, ISBN-13: 978-0136042594
Course Description	This course will introduce the basic principles in artificial intelligence research. It will cover simple representation schemes, problem solving paradigms, constraint propagation, and search strategies. Areas of application such as knowledge representation, natural language processing, expert systems, vision and robotics will be explored. The LISP programming language will also be introduced.
Course Objectives	 To have an appreciation for and understanding of both the achievements of AIand the theory underlying those achievements. To have an appreciation for the engineering issues underlying the design of AIsystems. To have a basic proficiency in a traditional AI language including an ability to write simple to intermediate programs and an ability to understand code written inthat language.

• To have an understanding of the basic issues of knowledge
representation and blind and heuristic search, as well as an
understanding of other topics such as minimax, resolution, etc. that
play an important role in AI programs.

Lecture Number	Topics
W1	INTRODUCTION, Intelligent Agents, Problem Solving Agents Introduction: What is Artificial Intelligence, Definition and Applications, Thinking Humanly, Thinking Rationally, Acting Humanly, Acting Rationally, Rational Agents, A Brief History Intelligent Agents: Agents, Agents and Environment, Rational Agents,
	PEAS (Performance Measure, Environment, Actuators, Sensors), Environment Types
W2	Agent Types and Basic Architectures: Simple Reflex Agents, Model- Based Reflex Agents, Goal-Based Agents, Utility Based Agents, Learning Agents, Problem Solving Agents, Goal Formulation, Problem Formulation Search
	Tree Search Algorithms: General Tree Search, Search Strategies, Uninformed Search Strategies Uninformed Search Strategies, Breadth – First Search, Uniform – Cost Search, Depth – First Search
W3	Informed (Heuristic) Search Strategies, Graph Search, A* Search Probability in Artificial Intelligence, Bayes Rule, Examples and Applications, Probabilistic Inferences
W4	Machine Learning: Types of Machine Learning, Supervised , learning, Unsupervised Learning, Reinforcement Learning, Statistical Learning Methods
W5	Supervised Learning, Bayesian Learning, Application, Bayesian Learning for Classification, Implementation.
W6	Unsupervised Learning – Clustering, , k-Nearest Neighbors
	Artificial Neural Networks, Fuzzy Logic
W7	Knowledge and Reasoning: Logical Agents, Knowledge Based Agents, Logic, Propositional Logic, First Order Logic
W8	Programming with Prolog Case Based Reasoning Semantic Networks
W9	Planning: Planning, Planning Under Uncertainty, Analysis of Planning Approaches
W10	Advanced Planning Games: Markov Decision Processes – I
W11	Markov Decision Processes – IL Evaluation Functions
W12	Game Theory – I
	Game Theory – II Hidden Markov Models and Filters: Markov Networks
W13	Gibbs Sampling Particle Filtering
	Hidden Markov Models – I
	Hidden Markov Models – II

Lecture Number	Topics
W14	Applications: Computer Vision – I.
	Computer Vision – II
	Robotics – I,
W15	Robotics – II
	Grammar of English
	Natural Language Processing – I,
W16	Natural Language Processing – II

Course Code	CS443
Course Title	Computer Graphics
Cr Hrs	4(3+1)
Pre-requisite	None
Recommended Texts	 Computer Graphics: Principles and Practice (3rd Edition) 3rd Edition, John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D. Foley, Steven K. Feiner, Kurt Akeley, Addison-Wesley Professional, 2013, ISBN-13: 978- 0321399526
	 Fundamentals of Computer Graphics, Fourth Edition 4th Edition, Steve Marschner, Peter Shirley, A K Peters/CRC Press, 2015, ISBN-13: 978-1482229394
	3. Computer Graphics Through OpenGL: From Theory to Experiments, Second Edition, SumantaGuha, A K Peters/CRC Press, 2014, ISBN-13: 978-1482258394
	 Computer Graphics using OpenGL, F.S. Hill Jr. & Stephen M. Kelley Jr, Pearson Books, 2016, ISBN-0023548568.
	5. Computer Graphics with OpenGL, Donald Hearn and M. Pauline Baker, Prentice Hall, 2013, ISBN-0130153907
Course Description	Important topics in computer graphics include sprite graphics, vector graphics, 3D modeling, shaders, GPUdesign, and computer vision, among others. The overall methodology depends heavily on the underlying sciences of geometry, optics, and physics. Computer graphics is responsible for displaying art and image data effectively and beautifully to the user, and processing image data received from the physical world. The interaction and understanding of computers and interpretation of data has been made easier because of computer graphics. Computer graphic development has a significant impact on many types of media and has evolutionized animation, movies, advertising, video games, and graphic design generally.
Course Objectives	 Students will use a standard computer graphics API (OpenGL) to reinforce concepts and study fundamental computer graphics algorithms. Computer Graphics is the study of basic concepts and principles of graphics. Topics include an introduction to the basic concepts, 2-D and 3-D modeling and transformations, viewing transformations, projections, rendering techniques, graphical software packages and graphics systems.

Lecture Number	Торіс
W1	Introduction to Computer Graphics: Course Introduction, Course Objectives, Course Contents, Quality expectations, An Initial Definition of Computer Graphics, Standard Definitions and Terms, Computer Graphics Research and Development Scope, Levels of Computer Graphics, Pattern, Pattern recognition, Pattern Classification, Brightness Adaptation And Discrimination, Contrast Sensitivity, Mach Bands, Image Formation Model, Historical Milestones
W2	Vector Math: Vector Definition, Vector Components, Vector Algebra, Vector Addition, Vector Addition with Numbers, component-wise operation, Vector Subtraction, Vector Multiplication, Unit Vectors and Normalization, Image Components in Matlab, Image Vector Operation in Matlab
W3	Open GL in Visual C++ .NET: Low-level API, cross-language ,cross-platform, 2D, 3D computer graphics, Why Learn About OpenGL, Graphics Platform, GLUT - The OpenGL Utility Toolkit, Configure and open window (GLUT) , Initialize OpenGL (Optional), Register input callback functions (GLUT) , Render, Resize ,Input: keyboard, mouse ,Enter event processing loop (GLUT)
W4	OpenGL Programming : The Header File Of OpenGL #Include <gl glut.h="">,A Simple Open GL Program To Create A Window, Clearing The Window, Windows Back Color, Closing The Window With Esc Key, Plotting Pixels, Plotting A Triangle</gl>
W5	OpenGL Programming: Filling The Triangle, Printing Cubes , Drawing A Complex Geometrical Shape, Plotting A Filled Square, Display A Filled Circle , Rotating Cubes, Clock Wise And Anti Clock Wise Rotation, 3 D Object Rotation
W6	Geometric Primitives in Open GL : Geometry Elements , A Triangle as a Geometry Object, A Simple Example of Geometry Elements , A Complex Example of Geometry Elements, Double Buffering In Animation , Animation Example in OpenGL.
W7	OpenGL for Interactivity: Image Processing, Image Synthesis, Photo real Rendering, Non-Photo real Rendering, Animation, Physics Simulation, Character Animation, Modeling, Raster and Vector Graphics, Graphics Interlacing, Frame buffer in Animation, 3D Models, Handling Keyboard Inputs with GLUT, Handling Mouse Inputs with GLUT
W8	Traditional Graphics Pipeline: Transformation, Lighting, Clipping, Scan conversion, Pixel processing.
W9	Color Models: Types of Color model, RGB Color Model, CMYK Color Model, Additive vs. Subtractive Color Models , HSI or HSV Color Model.
W10	Transformations: Translation, Scaling, Rotation, OpenGL Examples
W11	Lighting: Blinn-Phong Lighting Model, Ambient Lighting Model, Diffuse Lighting Model, Specular Lighting Model, Light source, Material Properties, Light Example in OpenGL.
W12	Shading: Shading model, some real word examples, Flat shading, Smooth Shading, OpenGL Examples of Flat and Smooth Shading. Triangulation: Problem of Triangulation, Triabulation, Calculation, Trifocal Tensor (Tritensor), Photogrammetry.
W13	Texture: Texture, Texture Applications, Textures Examples, Texture Synthesis, Texture Representing Methods, Statistical Methods, The Choice of Statistic, The Choce of Scale, Representing Texture Using the Statistics of Filter Outputs, Histogram based texture description, Grey Level Co-occurrence Matrix (GLCM).

Lecture Number	Торіс
W14	Radiosity: Cornell Box, Lighting Effects, Phong Shading, Ray Tracing, Planar piecewise constancy assumption, Diffuse Interreflections – Radiosity, Conservation of Energy. Counting the Object In the 3D Image: Step 1: Read the Image, Step 2: Convert the Image to Grayscale, Step 3: Threshold the image, Step 4: Complement the image, Step 5: Find the Boundaries of the Objects, Step6: Results, Matlab Code.
W15	Image Segmentation: Segmentation, Segmentation Applications, Human Vision: Grouping and Gestalt, Gestalt Factors, Parallel curves, symmetric groups, continuous curves, Closure Curves, Visual illusions (examples), Simple Segmentation Techniques: Background Subtraction, Shot Boundary Detection, Segmentation by Clustering, displaying objects in the Segmented Image, Detecting a Cell Using Image Segmentation.
W16	Unity 3D: Introduction to Unity 3D, Scripting in Unity 3D via Visual C#.NET

Course Code	SE202
Course Title	Software Requirement Engineering
Cr Hrs	3 (3+0)
Pre-requisite	SE101 (Software Engineering)
Recommended Texts	 Requirements Engineering for Software and Systems, Phillip A. Laplante, Second Edition (Applied Software Engineering Series) 2nd Edition, CRC Press, 2015, ISBN: 978-1466560819 Requirements Engineering: Foundation for Software Quality, Maya Daneva Oscar Pastor, Springer, 2016, ISBN: 978-3-319-30282-9 Requirements Engineering: Fundamentals, Principles, and Techniques 2010th Edition, Klaus Pohl, Springer; 2010 edition, ISBN-10: 3642125778, ISBN-13: 978-3642125775 Software Requirements (3rd Edition) (Developer Best Practices), Karl Wiegers & Joy Beatty, 2016, ISBN-10: 0735679665, ISBN-13: 978-0735679665 Requirements Engineering for Software and Systems, Third Edition (Applied Software Engineering Series) 3rd Edition, Phillip A. Laplante, 3rd Edition, Auerbach Publications, ISBN-10: 1138196118, ISBN-13: 978-1138196117
Course Description	This course enables students to understand basics of requirement engineering, its importance and various models used for gathering it.
Course Objectives	 Definition of requirements and its role in development Fundamental concepts and activities of engineering, Information election techniques, Modeling scenarios Fundamental of goal, Goal modeling heuristics, Object modeling for requirement engineering Deriving operational requirements from goals, requirements specification, requirements verification and validation

Lecture Number	Торіс

W1	Introduction to Software Requirements Engineering, Introduction of Software Requirements Engineering, IEEE Definition of Requirements Engineering. Types of Requirements
W2	Software Quality Requirements, The Four Worlds Model in Requirement Engineering. Software Requirement Traceability: The V Model and Requirements
W3	Concern of RE in each layer of V Model, Requirements and Communication, Tractability and Change Management. Tractability Analysis, Impact Analysis, Derivation Analysis, Coverage Analysis, Requirements and Testing
W4	Software Requirements Engineering Process Models: The Processes, Software Process Models, Process Difficulties, Focus of the Process, Process Decomposition (ISO 12207), Process Architecture
W5	RE Process Activities, RE process - inputs and outputs, RE process variability and Models. Linear RE process Model, Linear Iterative RE Process Model, Iterative RE Process Model, Spiral model of the RE process, Diagrams Represent Process Disciplines
W6	RE process problems, Process improvement, Planning process improvement, Good practice for RE process improvement Examples of good practice guidelines Requirements Elicitation: Requirements Elicitation, Reasons of elicitation, How to do requirements elicitation? Requirements Elicitation Process, Components of requirements elicitation, Elicitation activities, The requirements elicitation process
W7	Elicitation stages, Focus of Elicitation, Outcomes of Requirement Elicitation Requirements Engineering Techniques: Interviews, Types of interviews, Surveys, Questionnaires Task Analysis, Domain Analysis
W8	Introspection, Repertory Grids, Card Sorting, Class Responsibility Collaboration, Laddering, Group Work Brainstorming, Joint Application Development (JAD Requirements Workshops, Ethnography, Observation, Protocol Analysis
W9	Prototyping, Ethical and Legal Considerations in RE: Ethical Considerations, Some Of The Key Ethical Considerations in RE. The Right To Be Informed, The consent form, Permission to Record, Create a Comfortable Experience, Appropriate Language, Anonymity, The Right To Withdraw
W10	Appropriate Incentives, Valid and Reliable Data, Acknowledge the True Capabilities, Data Retention and Documentation, Debrief, Confidential Disclosure Agreement (CDA), Preparing for the User Requirements Activity: Creating a Proposal, Why Create a Proposal?, Sections of the Proposal,

	Programming practice, Top down & bottom up ,Structure Programming, Information hiding
W11	Internal documentation, conducting a Wants and Needs Analysis. Moderating Requirements Engineering Activity, Key Guidelines for Moderator. Inviting Observers, Advantages of Observers, Guidelines for Observers, Recording and Note-taking, Dealing with Awkward Situations
W12	Using Company's Existing Facilities, renting a Marketing or Hotel Facility, Building a Permanent Facility. Devoted User Requirements Facility and Digital versus Analog Labs, Learning about the Product & User. Networking, Customer Support Comments, Log Files, Marketing Department, Early Adopter or Partner Feedback
W13	Creating a User Profile, Persona, Benefits of personas, Things To Be Aware of When Creating Personas, Scenarios, Benefits of a Scenario, Components of Scenario, Template of Scenarios. Requirements Validation: Validation Objectives, Analysis & Validation
W14	Requirements Review Process and its Activities, Problem Actions, Pre-review Checking. Review Team Membership, Review Checklist
W15	Validation Inputs and Outputs, Prototyping for validation, model validation requirements testing, Test case definition, Requirements Test Form
W16	Standards and Requirements Validation EIA-632 Standards

Course Code	SE341
Course Title	Software Quality Engineering
Cr Hrs	3(3+0)
Pre-requisite	SE101 (Software Engineering)
Recommended Texts	 Software Quality Assurance, Ivan Mistri Richard M Soley John Grundy Bedir Tekinerdogan and Nour Ali, Elsevier Inc, 2016, ISBN: 978-0-12-802301 Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement", by Jeff Tian Software Quality Assurance: Principles and Practices 2nd Revised edition Edition, Nina S. Godbole, 2016, Alpha Science International Ltd, ISBN-10: 184265702X, ISBN-13: 978-1842657027
Course Description	This course gives you the overview of the concepts, philosophies, tools, techniques, guidelines, and framework for software quality assurance, verification and validation of software, measurement of quality, quality factors, quality costs at different stages of software

	development lifecycle, Software testing and usability evaluation methods Software quality standards.
Course Objectives	 This course concentrates on the rigorous development of high quality software systems It includes the processes, methods and techniques for developing quality software, for assessing software quality, and for maintaining the quality of software.

Lecture Number	Topic
W1	Introduction to Software Quality Assurance: Course Introduction Course Objectives, Course Contents, Quality expectations, An Initial Definition of (Software) Quality, Standard Definitions of (Software) Quality, Quality Problems in Large Software
W2	SQA Expectation : Turning Failure to Success: SQA, SQE for Meeting QualityExpectations, The SQE Process, Scope of Major SQE Activities
W3	Software Quality Frameworks : Quality: Perspectives and Expectations, Quality Frameworks and ISO-9126, Correctness and Defects: Definitions, Properties, and Measurements, A Historical Perspective of Quality
W4	SoftwareQualityAssuranceActivities:QualityAssurance(QA),ClassificationScheme for QA as Dealing with Defects, Defect Prevention,Defect Reduction (Defect Detection and Removal), Defect Containment
W5	Software Quality through Verification and Validation: QA in context, QA as Defect Handling, QA in Software Process Context, QA activities in V&V Context, V&V in Software Process, QA: Defect View vs. V&V View
W6	SQE embedded in Software Process: Quality Engineering, Key SQE Activities, SQE in Software Process
W7	Testing Overview: Mission of test groups, Generic Test Process, Test Concepts, What to Test: Black Box vs. White Box, Stopping Criteria: Coverage Based vs. Usage Based, Lifecycle Testing
W8	Testing Activities: Detailed Look at Major Testing Activities, Test Management: Responsibilities and Roles, Testing Automation, Test Documentation
W9	Boundary Testing : Checklist-Based Testing, Partitions and Partition Testing, Usage-Based Testing with Musa's Ops, OP Development, Procedure/Examples
W10	Coverage and Usage Testing Based on FSMs and Markov Chains: Finite- State Machines (FSMs), FSM-Based Testing, Markov Chains as Enhanced FSMs, Unified Markov Models (UMM) for Testing
W11	Software Inspection: Basic Concept and Generic Process, Fagan Inspection, Other Inspection and Related Activities, Other Issues.
W12	Defect Prevention and Process Improvement: Basic Concepts and Generic Approaches, Root Cause Analysis for Defect Prevention, Education and Training for Defect Prevention, Other Techniques for Defect Prevention, Focusing on Software Processes

W13	Fault Tolerance and Safety Assurance: Basic Concepts, Fault Tolerance via RB and NVP, Safety Assurance Techniques/Strategies, Summary and Perspectives
W14	Quality Through Automated Tools: UML generation, UML conversion into Coding Coding Standards: Coding Standards Rules, Best Practices
W15	Comparing QA Alternatives: General Areas/Questions for Comparison, Applicability, Effectiveness, and Cost, Summary and Recommendations
W16	Quality in GUI: Quality in user behavior Pattern, Guidelines for Quality interface designing.

Course Code	SE311
Course Title	Software Design and Architecture
Cr Hrs	3(3+0)
Pre-requisite	SE101 (Software Engineering)
Recommended Texts	1. Software Architecture and Design Illuminated, 2015 byJones and Bartlett Publishers, LLC
	2. Clean Architecture: A Craftsman's Guide to Software Structure and Design (Robert C. Martin Series) 1st Edition by Robert C. Martin (Author), 2017, Prentice Hall, ISBN-10: 0134494164, ISBN-13: 978-0134494166
	3. Design It!: From Programmer to Software Architect (The Pragmatic Programmers) 1st Edition by Michael Keeling, 2017, Pragmatic Bookshelf, ISBN-10: 1680502093, ISBN-13: 978-1680502091
Course Description	Software Architecture and Design will provide students with the principles and concepts involved in the analysis and design of large software systems and how to apply design principles, patterns, and architectures to create reusable and flexible software applications and systems.
Course Objectives	The learning objectives for the course are the following:
	Understand and apply object-oriented design techniques Develop and evaluate software architectures Select and use appropriate architectural styles Select and use appropriate software design patterns Express the specifications and design of an application using UML Specify parts of the design using a formal design language (OCL)

Lecture Number	Торіс

W1	The Role of Software Design Design as a problem-solving process Transferring design knowledge
W2	Constraints upon the design process and product Design in the Software Development Process A context for design
W3	Design Qualities The Architecture Business Cycle
W4	Architectures are influenced by system stakeholders Amplification of influences on an architecture
W5	Software Processes and the Architecture Business Cycle Understanding the requirements
W6	Creating or selecting the architecture
W7	Implementing the system based on the architecture, Ensuring that the implementation conforms to the architecture
W8	ARCHITECTURE ACTIVITIES what Makes a "Good" Architecture
W9	ARCHITECTURE AS A TRANSFERABLE, RE-USABLE MODEL
W10	Why Is Software Architecture Important? less Is More
W11	architectural Structures and Views Component-Based Software Architecture
W12	Architecture of User Interfaces Evolution of User Interfaces Look and Feel (Syntax) of User Interfaces
W13	1D layout , 2D layout, 3D layout: 4D layout: Dynamic Style of User Interfaces Usability (Semantics) of User Interfaces
W14	Design Considerations of User Interfaces Enabling Technology
W15	History of UML UML Class Diagrams Object-Oriented Concepts
W16	UML — Building Blocks UML — Basic Notations UML — Modeling Types

Course Code	SE422
Course Title	Software Project Management
Cr Hrs	3(3+0)
	5(5+0)
Dra raquisita	None
Fie-lequisite	None
Recommended Texts	1 Information Technology Project Management Jack T
recommended read	I mornance reemence, reject management, such i
	Marchewka, 5th Edition, WILEY, 2016 ISBN: 978-1118911013
1	,, _,, _

	 Agile Project Management with Scrum, Ken Schwaber, Microsoft Press, 2004, ISBN-978-0735619937. Software Project Management for Dummies, Teresa Luckey and Joseph Phillips, For Dummies, 2016, ISBN-13: 978-0471749349. The Complete Software Project Manager: Mastering Technology from Planning to Launch and Beyond (Wiley CIO), Anna P. Murray, 2016, 1st Edition, Publisher: Wiley, ISBN-10: 1119161835, ISBN-13: 978-1119161837
Course Description	This course gives you the overview about, what project management in general and software project management in particular. What tools and techniques you are used for the proper handling and management of a software project. The basic composition of the course is based upon routine activities, SOPs and norms of the market and how to go about traditional to latest trends
Course Objectives	 This course aims to cover the basics Deliver successful software projects that support organization's strategic goals Match organizational needs to the most effective software development model Plan and manage projects at each stage of the software development life cycle (SDLC) Create project plans that address real-world management challenges Develop the skills for tracking and controlling software deliverables

Lecture Number	Торіс
W1	What is Software Project Management?
	Management, Project Management, Software Project Management
	Scope & Limitations
W2	The WaterFall Model, In theory, In Practice
	Conventional Software Management Performance
	Software Economics
W3	Pragmatic Software Cost Estimation
	Reducing Software Product Size
	Improving Software Processes
W4	Improving Team Effectiveness
	Improving Automation through Software Environments
	Achieving Required Quality
W5	Peer Inspection: A Pragmatic Approach
	Engineering and Production Phases
	Inception Phase
W6	Elaboration phase
	Construction Phase
	Transition phase
W7	Work Breakdown Structure
	Project Team Structure, Team Structure & responsibilities, Advantages of
	Team Structure
W8	Organizational Structure, Functional, Matrix, Projectized
	Project Manager
W9	Deputy Project Manager

	Project Engineer
W10	Line of Business Organizations, SEPA, PRA, SEEA
W11	Project Organizations: Software Management Team, Software Architecture
	Team, Software Development Team, Software Assessment Team
W12	Evolution of Organization
	Request for Proposal (RFP)
W13	Contracts, Types of Contracts
W14	Feasibility Report
	Project Report
W15	Configuration Management
W16	Gantt Chart
	Pert Chart, COCOMO Model
	Critical Path Method (CPM)

Course Code	CS364
Course Title	Human Computer Interaction
Cr Hrs	3(3+0)
Pre-requisite	None
Recommended Texts	 Human-Computer Interaction: Fundamentals and Practice, Gerard Jounghyun Kim, Auerbach Publications, 2015, ISBN: 9781482233896 Human Computer Interaction (3rd Ed) By Alan Dix.Janet Finlay, ISBN: 9780130461094. Usability Engineering: Scenario-Based Development of Human Computer Interaction by Mary Rosson, John Carroll, Mary Beth Rosson ISBN : 978-1558607125

Course Description

Human-Computer Interaction (HCI) is the study of the principles and methods with which one builds effective interfaces for users. A basic precept of HCI is that users should be able to focus on solving problems, rather than dealing with the intricacies of complex software. Interfaces must be accessible, meaningful, visually consistent, comprehensive, accurate, and oriented around the tasks that users tend to perform. The course will provide a balance of practical and theoretical knowledge, giving students experience ordinarily not provided by other courses in computer science.

Course Objectives

To evaluate software user interfaces using heuristic evaluation and user observation techniques. Conduct simple formal experiments to evaluate usability hypotheses.

• Apply user centered design and usability engineering principles as they design a wide variety of software user interfaces.

Lecture Number	Торіс
W1	Introduction to HCI, The Goals of HCI
	Usability, HCI & its Evolution
	Input / Output Channel
W2	Human Senses and Characteristics
	Eyesight, Hearing, Touch, Human Memory, Emotions etc.
	The Computer, Text Entry Devices
W3	Positioning, Pointing & Drawing Devices, Display, Devices

1174	
W4	Physical Controls, sensors & special devices
	The Interaction, What are Goals, Domain, Intention
W5	Task Analysis, User& Task Language, and Intention
	Models of Interaction, The Execution-evaluation cycle, The interaction
W6	Frame Work, Ergonomics, Interaction Styles, Command line, Menus,
	WIMP, Natural Language, Point & Click, and Forms Fill-Ins etc
W7	Elements of WIMP, Paradigm & Interaction Design Basics, Paradigm
	Introduction, Paradigm for Interaction, Time Sharing, VDUs
W8	Programming Toolkit, Personal Language Vs Actions, Hypertexts,
	Multimodality, Computing, Direct Manipulations
W9	Computer supported Cooperative Works, The WWW, Agent Based
	Interfaces, Ubiquitous Computing
W10	Sensor Based and Context aware Interaction, Interaction Design Basics, The
	Process of design, Design Goals
W11	Constraints and Trade-Offs, Golden Rule of Design, User Focus, Scenario
W12	Navigation Design, Screen design and layout Iteration & Prototype, Design
	Rules, Principles to support usability, Standards
W13	Guidelines, Golden Rules & Heuristics, HCI Patterns
W14	Evaluation Techniques, What is Evaluation?, Goals of Evaluation,
	Evaluation through expert analysis
W15	Evaluation through user participation, Observational Techniques, Choosing
	an Evaluation method
W16	Universal Design, Universal Design Principles, Multi-Modal Interaction,
	Design for diversity

Course Code Course	SE411
Title	Software Re-Engineering
Cr Hrs	3(3+0)
Pre-requisite	Nil
Recommended Texts	 Object Oriented Reengineering Patterns (Serge Demeyer, Stéphane Ducasse, Oscar Marius Nierstrasz, 2016) Re-Engineering Legacy Software (Chris Birchall, 2016) Software Evolution and Maintenance (Kshirasagar Naik and Priyadarshi Tripathy, 2016)
Course Description:	This course explains the 'state-of-the-art' reengineering existing software systems. This includes an introduction to the recent research, as well as an overview of the principles techniques and skills applied in practice today. Students will acquire a range of principles, techniques and skills that are currently being used for reengineering existing software systems. Consequently, the course has a practical ring to it with a minimal theoretical content (taught as reengineering patterns), several lab-sessions (experimenting with a suite of reengineering tools) and one project (restructuring an existing large software system).
Course Objectives	• Assess which parts should be reengineered first, identify the risks and opportunities for a given re-engineering project and extract coarse-grained and fine-grained design models;

	 Exploit tests during re-engineering and select the most appropriate migration strategy; Solve the typical problems of an object-oriented re-engineering project
Course Outline	Software life-cycle and examination of Software Process Models
	 Decision making and economics of software re-engineering
	 Program analysis and program understanding
	• Source code representation at higher level of abstraction
	Discussion on CASE tools
	• Software metrics and their use in software evolution
	• Evaluation of the re-engineering product
	Re-engineering economics
	Software integration issues

Lecture Number	Торіс
W1	Software life-cycle and examination of Software Process Models
	Role of software maintenance and evolution in a product's life cycle
W2	Decision making and economics of software re-engineering
	Program analysis and program understanding
W3	Source code representation at higher level of abstraction
	Parsers and Abstract Syntax Trees, Control and Data Flow Graphs, Program
	Dependency Graphs
W4	Discussion on CASE tools
	Data flow analysis techniques
	Data Flow Analysis applications to slicing, change/impact analysis, re-
	documentation and, application partitioning
W5	Software metrics and their use in software evolution
	Software migration techniques
	Evaluation of the re-engineering product
W6	Quality metrics, metrics for progress and productivity
	Program Comprehension
W7	Re-engineering economics
	Software integration issues
	Software Cost Modeling
W8	Software Cost Computing
	System Evolution
W9	Software Re- engineering in Maintenance
	Data re-engineering in Maintenance
	Software Reuse and Reuse Landscape
W10	Software Reusability Definition, Problems Benefits Approaches To Reuse
W11	Software Reuse and Maintainability Issues Design Patterns, Frameworks,
	Program Generators, COTS, Reuse
W12	Aspect-Oriented Development
	Product Lines, Web-Services
	Software Quality Measures
W13	Types of measures: Size –Oriented Metrics, Metrics For Source Code,
	Metrics For Testing, Metrics For Maintenance, Metrics For Design,
	Metrics For Specification
W14	Pitfall and tricks of code analysis
	Identifying calling conversions

W15	Software Types: S-Type, P-Type
W16	Lehman's laws

Course Code	SE315
Course Title	Software Construction & Development
Cr Hrs	3 (3+0)
Pre-requisite	Nil
Recommended Texts	 Clean Code: A Handbook of Agile Software Craftsmanship, Robert C. Martin, Prentice Hall, 2008. The Pragmatic Programmer: From Journeyman to Master, Andrew Hunt and David Thomas, Addison-Wesley Professional, 1999. Working Effectively with Legacy Code, Michael C. Feathers. Pearson Education, Prentice-Hall, 2004. Refactoring: Improving the Design of Existing Code, Martin Fowler, Addison-Wesley Professional. 1999.
Course Description	This course gives students experience designing, implementing, testing, and debugging large programs. Students will also get advanced Java programming experience; covering topics such as inheritance, multithreading, networking, database programming, and web development.
Course Objectives	 At the end of the course the students will be able to: Understand the role of design and its major activities within the OO software development process, with focus on the Unified process. Develop Object-oriented design models and refine them to reflect implementation details Evaluate different architectures for a medium size software. Implement design model using an object-oriented programming language.

Lecture Number	Торіс
W1	Software development process, Software engineering process infrastructure
W2	Software engineering process improvement, Systems engineering life cycle model
W3	Process implementation, Levels of process definition
W4	Life cycle model characteristics, Individual and team software process
W5	Lehman's Laws, code salvaging, and configuration management
W6	Martin Fowler's refactoring concepts and their application to small projects
W7	Apply Michael Feathers' "legacy code" concepts
W8	Exception handling, making methods robust by having them check their inputs sent from calling objects
W9	Software configuration management, Release management,
W10	Software configuration management processes
W11	Software deployment processes, Distribution and backup, Evolution processes and activities

W12	Basic concepts of evolution and maintenance, Working with legacy systems
W13	Refactoring, Error handling
W14	exception handling, and fault tolerance
W15	Personal reviews (design, code, etc.)
W16	Peer reviews (inspections, walkthroughs, etc.)

Course Code	SE312
Course Title	Formal Methods in Software Engineering
Cr Hrs	3(3+0)
Pre-requisite	None
Recommended Texts	 Software Engineering Mathematics: Formal Methods Demystified, by Jim Woodcock, Martin LoomesISBN-13:978-0748408139 Concise Guide to Formal Methods: Theory, Fundamentals and Industry Applications, Gerard O'Regan, 2017, 1st edition, ISBN-10: 3319640208, ISBN-13: 978-3319640204 Formal Methods in Software Engineering (2011), Publish by FTMS Consultants (M) SdnBhd Kuala Lumpur, Malays Designing Reliable Distributed Systems: A Formal Methods Approach Based on Executable Modeling in Maude (Undergraduate Topics in Computer Science) 1st ed. 2017 Edition by Peter Csaba Ölveczky, 2017, 4th edition, springer, ISBN-10: 1447166868, ISBN-13: 978- 1447166863
Course Description:	The applied mathematics of computer system engineering used to specify and model the behavior of a system and to mathematically verify that the system design and implementation satisfy system functional and safety properties.
Course Objectives	 Students will learn to understand how formal methods (FM) help produce high-quality software by learning about formal modeling and specification languages. They would write and understand formal requirement specifications, Learn about main approaches in formal software verification, know which formal methods to use and when to use automated and interactive tools to validate models and code.

Lecture Number	Торіс
	What are Formal Methods? Why Consider Formal Methods?
	Formal methods in software engineering
W1	Scope and method, Formal Methods Concepts
	Classification of formal methods
	Specify and analyses
W2	Specify and prove, Specify and derive
	Specify and transform
W3	Architecture based Systems classification

	Asynchronous or synchronous hardware, analogue or digital hardware
	Mono- or multi-processor systems, Imperative/functional/logic-
W4	based/object-oriented software
	Multi-threaded or sequential software, Conventional or real-time
W5	operating systems
W6	Embedded systems or local systems or distributed systems
	Interaction based Systems classification
	Transformational systems
W7	Interactive systems
	Reactive systems
	System properties
W8	Limitations of formal methods
	Proposition Introduction to Proposition, Proposition Operators
W9	Introduction to Truth Table, Truth Table and Proposition
	Introduction to Formal Methods
	Critical Software, Integrity Level
	Stages in Formal Methods
W10	Predicates, Introduction Existential
	Universal
	Sets
W11	Universe, Elements
	Cardinality
W12	Sets Relationship
	Sets Operation
W13	UML and Formal Methods
	The Object Constraint Language (OCL)
	Algebraic Specifications, Specifications of abstract data types
W14	Completeness, Axioms and term rewriting
	Modularity and re-usability
W15	Model-based specifications
	The Z (Zed) specification Language
W16	Z Schemas, Seven Myths of Formal Methods

Course Code	SE441	
Course Title	Software Testing	
Cr Hrs	3(3+0)	
Pre-requisite	Nil	
Recommended Texts	 Software Testing: A Practical Approach, SANDEEP DESAI ABHISHEK SRIVASTAVA, 2nd edition, PHI Learning Pvt LTD, 2016, ISBN: 978-81-203-5226-1 Foundations of Software Testing by by <u>Cem Kaner, Rebecca L</u> <u>Fiedler</u>, 2013 by Context-Driven Press, 2013, ISBN-13: 978- 0989811927 	

	3. Software Testing: Concepts and Operations, <u>Ali Mili, Fairouz</u> <u>Tchier</u> ,ISBN: 978-1-118-66287-8,July 2015, ISBN: 978-1-118- 66287-8
Course Description	The course covers the important software testing by studying various software testing techniques in details.
Course Objectives	 To find defects which may get created by the programmer while developing the software. To gain confidence in and providing information about the level of quality. To prevent defects, to make sure that the end result meets the business and user requirements and also to gain the confidence of the customers by providing them a quality product.

Week W	ise Distr	ibution of	f the	Contents
--------	-----------	------------	-------	----------

Lecture Number	Торіс
W1	Software Quality Attributes
	Boolean Attributes, Statistical Attributes
W2	Operational Attributes
	Usability Attributes
	Business Attributes
W3	Structural Attributes
	Why is testing necessary? What is testing?
	Testing Principles
W4	Testing Objectives
	Fundamental test Process-I
	Fundamental test process-II
W5	Psychology of testing Testers and code of ethics
	Paradoxes and main principles
	Types of tests Test and maintenance.
W6	Test organization Test planning and estimation
	Test progress monitoring and control
	Who does Testing?, When to Start Testing?
W7	When to Stop Testing? Verification & Validation
	MYTHS: Myth 1: Testing is Too Expensive, Myth 2: Testing is Time
	Consuming
W8	Only Fully Developed Products are Tested, Myth 4: Complete Testing is
	Possible
W9	Myth 5: A Tested Software is Bug, Myth 6: Missed Defects are due to Testers
W10	Myth 7: Testers are Responsible for Quality of Product
	Myth 8: Test Automation should be used Wherever Possible to Reduce Time
	Myth 9: Anyone can Test a Software Application
	Myth 10: A Tester's Only Task is to Find Bugs
W11	OA. OC. AND TESTING
	Testing, Quality Assurance, and Quality Control
W12	Audit and Inspection
** 12	Testing and Debugging
	ISO STANDARDS, ISO/IEC 9126

W13	ISO/IEC 9241
	ISO/IEC 25000:2005
	TYPES OF TESTING, Manual Testing
W14	Automation Testing, What to Automate?
	When to Automate?, How to Automate?
	Software Testing Tools,
W15	Testing Methods, Black Box Testing
	White Box Testing, Grey Box Testing
	White Box Testing, Grey Box Testing
W16	Integration Testing, System Testing
	Regression Testing, Acceptance Testing

Course Code	CS457
Course Title	Simulation and Modeling
Cr Hrs	3(3+0)
Pre-requisite	CS251 (Software Engineering)
Recommended Texts	1. Simulation Modeling and Arena, Manuel D. Rossetti, 2nd
	Edition, Wiley, 2015, ISBN: 978-1-118-60791-6
	2. Simulation Modeling and Analysis, Averill Law, 5th Edition,
	Mc-Graw Hill EDUCATION, 2015, ISBN: 978-0071255196
	3. B. P. Zeigler, Theory of Modelling and Simulation, Academic
	Press, second edition, 2000, ISBN 9780127784557
	4. Theory of Modeling and Simulation: Integrating Discrete Event
	and Continuous Complex Dynamic Systems, Bernard P.
	Zeigler, Herbert Praehofer, Tag Gon Kim, Academic Press,
	2000, ISBN-13: 978-0127784557
Course Description	By the end of this course, student should have a deep understanding of the
	concepts of modeling and simulation of dynamic systems using a variety
	of formalisms. Student should be able to build modeling and simulation
	systems. This will give student ample background to understand and use
	existing modeling and simulation systems
Course Objectives	The purpose of this course is to provide
	• Students with an opportunity to develop skills in modeling and
	simulating a variety of management-related problems.
	• After learning the simulation techniques, the students are
	expected to be able to solve real world problems which cannot be
	solved strictly by mathematical approaches.

Lecture Number	Торіс
W1	Basic Simulation Modeling, The Nature of Simulation
	Systems, Models, and Simulation
	Discrete-Event Simulation

W2	Simulation of a Single-Server Queueing System, Simulation of an Inventory
	System
	Parallel/Distributed Simulation and the High Level Architecture
	Steps in a Sound Simulation Study, Other Types of Simulation, Advantages,
	Disadvantages, and Pitfalls of Simulation
W3	Modeling Complex Systems
	List Processing in Simulation
	Assessing the Homogeneity of Different Data Sets
W4	
	Single-Server Queueing Simulation with simlib, Time-Shared Computer
	Model
	Multiteller Bank with Jockeying, Job-Shop Model
	Simple Simulation Language: simlib
W5	Efficient Event-List Manipulation
	Simulation Software, Comparison of Simulation Packages with Programming
	Languages
	Classification of Simulation Software, Desirable Software Features
W6	General-Purpose Simulation Packages
	Object-Oriented Simulation
	Review of Basic Probability and Statistic
W7	Random Variables and Their Properties
	Simulation Output Data and Stochastic Processes
	Estimation of Means, Variances, and Correlations
W8	Confidence Intervals and Hypothesis Tests for the Mean
	The Strong Law of Large Numbers
	The Danger of Replacing a Probability Distribution by its Mean
W9	Comments on Covariance-Stationary Processes
	Building Valid, Credible, and Appropriately Detailed Simulation Model
W10	Guidelines for Determining the Level of Model Detail, Verification of
	Simulation Computer Program
W11	Techniques for Increasing Model Validity and Credibility
	Management's Role in the Simulation Process
W12	Statistical Procedures for Comparing Real-World, Observations and
	Simulation Output Data
	Random-Number Generator
	Selecting Input Probability Distribution
W13	Useful Probability Distributions, Techniques for Assessing Sample
	Independence
W14	Activity I: Hypothesizing Families of Distributions, Activity II: Estimation of
	Parameters
W15	Activity III: Determining How Representative the Fitted Distributions
	The ExpertFit Software and an Extended Example
W16	Shifted and Truncated Distribution
	Bézier Distributions
	Specifying Multivariate Distributions, Correlations, and Stochastic Processes
W6 W7 W8 W9 W10 W11 W12 W12 W13 W13 W14 W15 W16	General-Purpose Simulation Packages Object-Oriented Simulation Review of Basic Probability and Statistic Random Variables and Their Properties Simulation Output Data and Stochastic Processes Estimation of Means, Variances, and Correlations Confidence Intervals and Hypothesis Tests for the Mean The Strong Law of Large Numbers The Danger of Replacing a Probability Distribution by its Mean Comments on Covariance-Stationary Processes Building Valid, Credible, and Appropriately Detailed Simulation Model Guidelines for Determining the Level of Model Detail , Verification of Simulation Computer Program Techniques for Increasing Model Validity and Credibility Management's Role in the Simulation Process Statistical Procedures for Comparing Real-World, Observations and Simulation Output Data Random-Number Generator Selecting Input Probability Distribution Useful Probability Distributions, Techniques for Assessing Sample Independence Activity I: Hypothesizing Families of Distributions, Activity II: Estimation of Parameters Activity III: Determining How Representative the Fitted Distributions The ExpertFit Software and an Extended Example Shifted and Truncate

Course Code	C\$342
Course Title	Web Designing
Cr Hrs	4(3+1)
Pre-requisite	CS113 (Object Oriented Programming)
Recommended Texts	 Web Design with HTML, CSS, JavaScript and jQuery Set 1st Edition, Jon Duckett, Wiley, 2014, ISBN-13: 978-1118907443 Web Design All-in-One For Dummies 2nd Edition, Sue Jenkings, For Dummies, 2013, ISBN-13: 978-1118404102 Head First HTML5 Programming, Eric Freeman and Elisabeth Robson, 2011, ISBN: 978-1-449-39054-9 How to Do Everything with JavaScript, Scott Duffy, 2013, ISBN- 0-07-222887-3. A Practical Guide to Designing for the Web, Mark Boulton Design, Limited 2000, ISBN 12: 078-0056174017

Course Description

This course introduces students to basic web design using HTML (Hypertext Markup Language) and CSS (Cascading Style Sheets). The course does not require any prior knowledge of HTML or web design. Throughout the course students are introduced to planning and designing effective web pages; implementing web pages by writing HTML and CSS code; enhancing web pages with the use of page layout techniques, text formatting, graphics, images, and multimedia; and producing a functional, multipage website.

Course Objectives

- Recognize and understand HTML web page elements
- Know how to write HTML code
- Understand and apply effective web design principles
- Enhance web pages using text formatting, color, graphics, images, and multimedia
- Incorporate forms into web pages
- Understand and apply CSS to format web page elements
- Adding scripting language to add action to HTML.
- To make the design and contents of a website optimized for search engines called Search Engine Optimization (SEO)

Lecture Number	Торіс
W1	Introduction to the Course
	Hyper Text Markup Language (HTML)
	Setting Environment for HTML (Software)
	Getting started with tags
	HTML Elements
	Paired and Singular Tags
	HTML, Head, Title, Body tags
	Writing simplest web page
	How to save webpage
	How to view webpage
	HTML Paragraphs, Headings
	HTML Attributes
	HTML Comments

W2	HTML Formatting Bold, Emphasize, Italic, Underline, Marked, Small, Deleted, Inserted, Subscript SuperScript, Code, Preformatted, Abbreviation, Quotations, Cite, Address etc HTML Colors Standard Colors, RGB Colors, HexaDecimal Colors Linking Documents Images Linked Images HTML Lists Ordered Lists Un-Ordered Lists
W3	HTML Table HTML Forms Form Methods Form Elements HTML5 Form Elements
W4	Meta Tag Inline Frames (IFrame) Div and Span HTML Media Video Audio Plug-Ins HTML Graphics HTML Convas
W5	HTML API's Geolocation HTML Drag-Drop HTML Local Storage App Cache
W6	App Cache HTML Web Workers Cascaded StyelSheet (CSS) The Style Attribute CSS Syntax Inlined CSS Internal CSS External CSS
W7	CSS Selectors Tags, Class, Id, Pseudo Selectors, Attribute Selectors CSS3 Selectors CSS Properties Font CSS Properties Text CSS Properties Setting Size (various units of text size) Background CSS Properties Border CSS Properties Links CSS Properties
W8	Box Model in detail Setting Layout Using Display, Position, Float, Width, Height CSS properties for setting layout Using Div for Layout Setting Introduction to Responsive Design Responsive Design explained with an example

W9	Introduction to Scripting Languages Introduction to Javascript How to add Javascript to HTML Inlined Javascript Internal Javascript External Javascript
W10	Javascript Syntax Data Types Variables Complex Data Types (Arrays, Objects) Operators
W11	Defining Methods in Javascript Selection Statements in Javascript Looping in Javascript Event-driven HTML and Javascript
W12	RegEx Javascript Form Validation
W13	Javascript Debugging Understanding Browser support JS HTML Document Object Model (DOM)
W14	JQuery Basics JQuery in Action JSON Basics
W15	Communicating with Web Server using Javascript Search Engine Optimization (SEO)
W16	Getting website on InternetUnderstanding how HTTP Works and Request are processedUnderstanding the overall cycle of how web worksWhat is Domain NameSelecting Domain NamesPurchasing Domain NamesPurchasing Hosting Space on Shared Web-ServerUploading files on rented space using FTPHow to bind your domain name with hosting serverVisiting Website LiveHow to make money from your website by advertisement

Course Code	CS316
Course Title	Visual Programming
Cr Hrs	3(2+1)
Pre-requisite	CS213 (Object Oriented Programming)
Recommended Texts	1. Introduction to Programming Using Visual Basic (10th
	Edition), David I. Schneider, Pearson, publisher (April 28, 2016),
	ISBN: 978-0134542782
	2. Beginning Visual C# 2012 Programming by Karli Watson, Jacob
	Vibe Hammer, Jon Reid and Morgan Skinner, Wrox, 2012, ISBN-
	13: 978-1118314418.
	3. C# For Beginners: The tactical guidebook - Learn CSharp by
	coding, Jonas Fagerberg, Kindle Edition, 2015, ASIN:
	B017OAFR8I.

Course Description	Visual programming is a special area in which you will develop programs
	for MS windows. This course will discuss Microsoft based Windows
	platform. We will be using C# language as programming tool as it is the
	top choice for desktop programming and also because the most of
	Windows Application Programming Interfaces (API)are developed in C#
	language; furthermore, the documentation available for API by Microsoft
	also contains C# syntax. We will explore main features of Windows
	Programming like interface designing, event-based programming,
	multithreading, handling exceptions, and using GDI etc.
Course Objectives	Describe and explain the functional mechanisms of Windows
	platform i.e. how it works and the concepts related to basic
	Windows architecture
	Develop fine-tuned and robust applications for MS Windows
	Get hands in specialized and more complex areas of windows
	programming like network programming, graphics programming
	etc.

Lecture Number	Торіс
W1	Introduction: Introduction to Visual Studio(VS) .NET IDE, VS installation and setting environment for C# development, Menu Bar and Toolbar
W2	Solution Explorer: Toolbox, Properties Window, Using Help, Simple Program: Displaying Text and an Image Introduction to C# programming: Simple Program: Printing a line of text, Another Simple Program: Adding Integers
W3	Memory Concepts: Arithmetic, Decision Making: Equality and Relational Operators Control Structures: Looping, Making Decision
W4	Control Structures: Arrays in C#, Array Initialization in different ways Different Types of Arrays in C#, Jagged Arrays, Foreach Loop
W5	Object Oriented Programming with C#, Structure of .Net classes Defining Namespaces, Classes, Abstract Classes
W6	Methods: Properties, Defining Access Level, Assemblies, Class View and Object Browser Static Classes, Static Constructors, Static Members, Static vs Instance Members
W7	Exception Handling, Try, Catch, and Finally blocks, C# Exception Classes, Throwing Exception
W8	Graphical User Interface, Windows Forms, Event Handling Model, Delegates Basic Controls of Windows Forms Advance Controls of Windows Forms, Listbox, CheckboxList, RadioList
W9	Multiple Document Interfaces (MDI), MenuStrip, ToolStrip, StatusStrip TreeView Data Access with ADO.Net, Namespaces and Classes for Database access Connecting to database
W10	SqlConnection, SqlCommand, Insert, Update, Delete commands ExecuteNonQuery Fetching Data from database, DataReader, Going through fetched data Displaying data

W11	Binding controls to database, Gridview control, DropDownList, RadioList, CheckBoxList, Editing data in Gridview control Layering and its important, Data Link Layer (DLL), Business Login Layer (BLL) Presentation Layer
W12	Introduction to LINQ and Object Relational Mapping (ORM) Files and Streams, Static Classes FileInfo (Create, Delete) File, Append Text to File
W13	DirectoryInfo(Create, Delete) Directory, Look for files, File Explorer Working with Streams Threads, Thread States: Life Cycle of a Thread, Thread Priorities
W14	Multi-Threading, Delegates, Multi-Threaded Applications Thread Synchronization, ThreadPool
W15	Graphical Device Interface (GDI) and GDI+Drawing basic graphic elements Working with Convas, Complex graphics objects manipulation
W16	Windows Based Services, Files and Registry Operations Windows Services, Windows Service Architecture Creating Windows Services

Course Code	CS454
Course Title	Software Project Management
Cr Hrs	3(3+0)
Pre-requisite	CS251 (Software Engineering)
Recommended Texts	 Information Technology Project Management, Jack T Marchewka, 5th Edition, WILEY, 2016 ISBN: 978-1118911013 Agile Project Management with Scrum, Ken Schwaber, Microsoft
	Press, 2004, ISBN-978-0735619937.
	3. Software Project Management for Dummies, Teresa Luckey and
	Joseph Phillips, For Dummies, 2016, ISBN-13: 978-0471749349.
	4. The Complete Software Project Manager: Mastering Technology
	from Planning to Launch and Beyond (Wiley CIO), Anna P.
	Murray, 2016, 1 st Edition, Publisher: Wiley, ISBN-10:
	1119161835, ISBN-13: 978-1119161837
Course Description	This course gives you the overview about, what project management in general and software project management in particular. What tools and
	techniques you are used for the proper handling and management of a
	software project. The basic composition of the course is based upon
	routine activities, SOPs and norms of the market and how to go about
Course Objectives	traditional to latest trends
Course Objectives	This course aims to cover the basics
	Deriver successful software projects that support organization's strategic goals
	• Match organizational needs to the most effective software development model

• Plan and manage projects at each stage of the software development life cycle (SDLC)
• Create project plans that address real-world management challenges
• Develop the skills for tracking and controlling software deliverables

Lecture Number	Торіс
W1	What is Software Project Management? Management, Project Management, Software Project Management Scope & Limitations
W2	The WaterFall Model: In theory, In Practice Conventional Software Management Performance Software Economics
W3	Pragmatic Software Cost Estimation Reducing Software Product Size Improving Software Processes
W4	Improving Team Effectiveness Improving Automation through Software Environments Achieving Required Quality
W5	Peer Inspection: A Pragmatic Approach Engineering and Production Phases Inception Phase
W6	Elaboration phase Construction Phase Transition phase
W7	Work Breakdown Structure Project Team Structure: Team Structure & responsibilities, Advantages of Team Structure
W8	Organizational Structure: Functional, Matrix, Projectized Project Manager
W9	Deputy Project Manager Project Engineer
W10	Line of Business Organizations: SEPA, PRA, SEEA
W11	Project Organizations: Software Management Team, Software Architecture Team, Software Development Team, Software Assessment Team
W12	Evolution of Organization
W13	Request for Proposal (RFP) Contracts: Types of Contracts
W14	Feasibility Report Project Report
W15	Configuration Management Gantt Chart
W16	Pert Chart Critical Path Method (CPM) COCOMO Model

Graduate Core Courses (Description and Contents)

Course Code	C8515
Course Title	Theory of Computation
Cr Hrs	3(3+0)
Pre-requisite	Nil
Recommended Texts	 Introduction to the Theory of Computation 3rd edition, Michael Sipser, Cengage Learning Publisher (2014), ISBN: 978- 8131525296
	2. Introduction to the theory of Computation, by Michael Sipser, ISBN-13: 978-1-133-18779-0, published by Cengage Learning, 2012
	3. Introduction to languages and the theory of computation, by John Martin, ISBN: 0073191469, 2010
	4. Introducing The Theory Of Computation, Wayne Goddard, 2008, ISBN-13: 978-0763741259

Course Description

Introduces the foundations of formal language theory, computability, and complexity. Shows relationship between automata and various classes of languages. Addresses the issue of which problems can be solved by computational means, and studies complexity of solutions.

Course Objectives

- To introduce the students to the mathematical foundations of computation including automata theory, the notations of algorithm, decidability, complexity and computability.
- To enhance students ability to understand and conduct mathematical proofs for computation and algorithms

Lecture Number	Торіс
W1	Introduction
	Terminologies of Languages
	Descriptive definition
W2	Examples using Descriptive definition
W3	Recursive Definition
	Examples using Recursive definition
W4	Regular Expressions(RE)
	Examples of Regular Expressions(RE)
W5	Finite Automaton(FA)
	Examples of Finite Automaton(FA)
W6	Martin Technique
	Non- Deterministic Finite Automata- NFA
	Conversion of NFA to DFA
W7	Union of Two FAs
	Concatenation of Two FAs
W8	Transition Graph-TG
	Generalize Transition Graph- GTG
W9	Context Free Grammar-CFG
	Examples of CFG
W10	Tree
	Ambiguity
	Parsing

W11	Languages that are not context-free: pumping lemma for CFLs Pushdown Automata
W12	Recursively Enumerable Languages Turing machines Examples
W13	Computability Theory Transformations Decidability
W14	Complexity Theory Time and space complexity
W15	P, NP NP-Completeness, reductions
W16	Other complexity classes

Course Code	CS516
Course Title	Advance Analysis of Algorithms
Cr Hrs	3(3+0)
Pre-requisite	Nil
Recommended Texts	 Predictive Analytics For Dummies , Dr. Anasse Bari , Mohamed Chaouchi ,Tommy Jung , Publisher For Dummies (March 24, 2014), ISBN: 978-1118728963 Practical Analysis of Algorithms (Undergraduate Topics in Computer Science) 2014th Edition , Dana Vrajitoru , William Knight, Springer Publisher (September 15, 2014), ISBN: 978-
	 3319098876 T. H. Corman, R. L. Rivest, Introduction to Algorithms, MIT Press, 2001, ISBN 978-0262033848, 2009 R.Sadgewick and P.Flajolet, Introduction to the Analysis of Algorithms, Addison-Wesley Publishing, 1996, ISBN 978-0321905758 Analysis Of Algorithms, Jeffrey McConnell, 2007, ISBN-13: 978-0763707828

Course Description

Algorithms are essentially required for solving a wide range of computational problems from a number of different fields such as Artificial Intelligence, Data Mining, Distributed Systems and Computer Networks. Course contents include the study of algorithm analysis techniques and algorithm design strategies that are currently used in a variety of application domains.

Course Objectives

At the end of this course, students should be able to

- Design and develop new and efficient algorithms
- Analyze existing algorithms and select suitable algorithms for complex problem solving.

Lecture Number	Торіс
W1	Introduction
	Mathematical Preliminaries, Computational Complexity, Calculating
	Asymptotic Complexity
W2	Sorting Algorithms
	Solve recurrence relations
W3, W4	P, NP and NP-Completeness

W5, W6	Understand the concepts of Dynamic programming
W7, W8	Understand the concepts of Greedy Algorithm
W9, W10	Understand the concepts of Graph traversing
W11	Satisfiability Problems Evolutionary Algorithms
W12	Understand the algorithms for computing shortest path, Basics of Complexity theory
W13	Linear Programming
W14	Genetic Algorithms
W15	Approximation Algorithms
W16	Theory of Randomization

Course Code	CS517
Course Title	Advanced Operating Systems
Cr Hrs	3(3+0)
Pre-requisite	Nil
Recommended Texts	 Andrew S. Tanenbaum and Maarten van Steen. "Distributed Systems: Principles and Paradigms", Prentice Hall, 2nd Edition, 2007. (Required) Modern Operating Systems, Tanenbaum, Andrew S. Tanenbaum.
	2nd Edition, ISBN: 978-0136006633, Prentice Hall (2001)

Course Description

The course will focus on the engineering and performance trade-offs in the design of operating systems. The purpose will be to teach not only what operating systems are and how they work today, but also why they are designed the way they are and how they are likely to evolve in the future. The emphasize will be on the practical aspects of the topics through the case study of Linux kernel as an example of a commercial operating system.

Course Objectives

Upon successful completion of the course the students would be able to:

- Understand in great detail how and why different parts of an operating system work.
- Understand the engineering tradeoffs involved in the design of various sub-modules of an operating system.
- Understand how operating systems are structured, what are alternative OS architectures and how different modules interact together to form a cohesive and complex system.

Lecture Number	Торіс	
W1	Review of Operating Systems concepts	
W2	Hardware concepts of distributed systems	
W3	Software concepts and design issues	
W4	Communication in distributed systems	
W5	Threads and thread usage	
	Multithreading operating system	
W6	Client – server model	
	Implementation of Client-server model	
W7	Remote procedure call	
-----	---	--
W8	Implementation of remote procedure call	
W9	Synchronization in distributed systems	
W10	Clock synchronization	
W11	Mutual exclusion; Election algorithms	
W12	Transaction and concurrent control	
W13	Deadlock in distributed systems	
W14	Processor Allocation	
W15	Real – time distributed systems	
W16	Distributed file systems	

Course Code	CS531			
Course Title	Advance Computer Architecture			
Cr Hrs	3(3+0)			
Pre-requisite	None			
Recommended Texts	 Computer Organization and Architecture – Designing or Performance, 10th Edition, by Willian Stallings Computer Architecture – A Quantitative Approach, 5th Edition, by John L. Hennessy and David A. Patterson Structured Computer Organization, 5th Edition by Andrew S. Tapenbaum 			
Course Description	The course covers the topics of organization and architecture of computer systems hardware; instruction set architectures; addressing modes; register transfer notation; processor design and memory systems.			
Course Objectives	 To enable students to understand the basic components of a computer system To enable students to understand the issues that are limiting the performance of processor, caches and memories To enable students to highlight architecture and organization parameters for processor performance To enable students to understand the cycle of instruction execution in the pipeline of a processor 			

Lecture No.	Contents
W1	Organization and Architecture, Structure and Functions
W2	History of Computers, Evolution of Intel x86 Architecture, Embedded Systems, ARM Architecture
W3	Designing for Performance, Multicore, MICs and GPGPUs, Amdahl's Law, Little Law, Basic measure of computer performance
W4	Computer components, Computer function, Interconnection Structures, Bus Interconnection, Point-to-Point Interconnect, PCI Express

W5	Computer Memory System, Cache Memory Principles, Elements of cache Dsign
W6	Mapping functions, Replacement algorithms, Pentium 4 cache organization
W7	Semiconductor main memory, Error Correction
W8	DDR DRAM, Flash Memory, Newer Nonvolatile Solid-State Memory Technologies
W9	Magnetic Disk, RAID, Solid State Drives
W10	Optical Memory, Magnetic Tape, Machine instruction characteristics
W11	Types of operands, Types of operations, Addressing modes, Instruction format
W12	Processor organization, Register organization, Instruction cycle, Instruction pipelining
W13	Instruction execution characteristics, The use of large register file,
W14	Compiler-based register optimization, Reduced instruction set architecture, RISC pipelining
W15	MIPS R4000, SPARC, RISC vs CISC controversy
W16	Instruction level parallelism, Design issues, ,Intel core microarchitecture, ARM Cortex-A8, Coretex-M3

Course Code	SE501	
Course Title	Advanced Requirements Engineering	
Cr Hrs	3(3+0)	
Pre-requisite	Nil	
Recommended Texts	1. Software Engineering: A Practitioner's Approach, Roger S. Pressman, Bruce R.	
	2. Maxim, 8th Ed, McGraw-Hill Education, 2015.	
	3. Object-Oriented Analysis, Design and Implementation, Brahma	
	Dathan, Sarnath	
	4. Ramnath, 2nd Ed, Universities Press, India, 2014.	
	5. Software Modeling and Design: UML, Use Cases, Patterns, and	
	Software	
	6. Architectures, Hassan Gomaa, Cambridge University Press, 2011.	
	7. Applying UML & Patterns: An Introduction to Object-Oriented	
	Analysis & Design and Iterative Development, Craig Larmen, 3rd	
	Edition. (2004)	

Course Description

The course will discuss concepts for systematically establishing, defining and managing the requirements for a large, complex, changing and software-intensive systems, from technical, organizational and management perspectives. The course will consider the past, present and future paradigms and methodologies in requirements engineering. The course will cover informal, semi-formal and formal approaches, while striking a balance between theory and practice. The course will involve building models of both requirements engineering process and requirements engineering product, concerning both functional and non-functional goals/requirements/specifications, using a systematic decision-making process.

Course Objectives

The main objectives are to:

- 1. Understand the need for requirements for large-scale systems.
- 2. Understand the stakeholders involved in requirements engineering.
- 3. Understand requirements engineering processes.
- 4. Understand models of requirements.
- 5. Understand functional requirements.
- 6. Understand non-functional requirements.
- 7. Understand scenario analysis
- 8. Understand object-oriented and goal-oriented requirements engineering

Week Wise Distribution of the Contents

Lecture Number	Торіс
W1	Software Requirements Fundamentals: Product and process requirements
W2	Functional and non-functional requirements
W3	Emergent properties, Quantifiable requirements
W4	System and software requirements
W5	Requirements Process: Process models, Process actors
W6	Process support and management, Process quality and improvement
W7	Requirements Analysis: Requirements sources, Elicitation techniques
W8	Requirements Analysis: Requirements classification, Conceptual modeling
W9	Architectural design and requirements allocation, Requirements negotiation, Formal analysis
W10	Requirements Specification: System definition document, System requirements document
W11	Software requirements specification
W12	Requirements Validation: Requirements reviews, Prototyping, Model validation, Acceptance tests
W13	Practical Considerations: Iterative nature of the requirements process, Change management
W14	Requirements attributes, Requirements tracing, Measuring requirements
W15	Software Requirements Tools
W16	Current research topics in requirement engineering.

Course Code	SE511
Course Title	Advanced Software System Architecture
Cr Hrs	3(3+0)
Pre-requisite	Nil
Recommended Texts	1. Designing Software Architectures: A Practical Approach (SEI
	Series in Software Engineering), Humberto Cervantes, Rick
	Kazman, 1st Edition, Addison-Wesley Professional. (2016)
	2. Software Product Lines: Practices and Patterns, P. Clements and L.
	Northrup, Addison-Wesley. (2001)
	3. Software Architecture: Foundations, Theory, and Practice, R.
	Taylor, N. Medvidović and E.M. Dashofy, John Wiley. (2010)

Course Description

This course introduces students to the architectural patterns and abstractions used in the design of software systems. It covers principles and practices for structuring software—how to model and organize large systems so that they are understandable, efficient, and most importantly extensible. Students

analyze, implement, and document software structures utilizing common object-oriented and modulelevel design patterns. They also consider how these software structures shapes the effectiveness and use of different libraries, frameworks, and APIs, so that they are better able to choose and integrate these tools when developing information systems. Concepts are applied through programming interactive applications using TypeScript. In the end, students will understand the ways that large software systems are structured, and how to consider these structures when making decisions about the development and management of information technology.

Course Objectives

The main objective of this course is to enable students for:

- Model software systems and design their architecture following engineering best practices.
- Recognize common architectural styles in software, and analyze their use in information technologies and for particular problem domains.
- Describe and diagram common software design patterns used in software projects.
- Apply architectural patterns in the development of complex software systems, including through the use of existing frameworks and APIs.
- Assess the utility of a software system's architecture and its feasibility for achieving particular goals

Lecture Number	Торіс
W1	Quality attributes in the context of architecting.
W2	Qualitative and quantitative assessment of architectures.
W3	Architectural modeling through Architecture Description Languages
W4, W5	System modeling its relation to software architecting
W6	Architecting for evolution and variability
W7	Partitioned and layered architectures
W8	System-of-Systems and Ultra-Large Scale Systems
W9-W10	Software Product Lines and Configurable Software
W11	Self-Adaptive Software
W12	Architectural Description Languages
W13	Feature Modeling
W14	Architecture and Model-Based Testing
W15-W16	Current research topics in software system architecture

Course Code	SE541
Course Title	Software Testing and Quality Assurance
Cr Hrs	3(3+0)
Pre-requisite	Nil
Recommended Texts	1. Software Quality Assurance: Integrating Testing, Security, and Audit (Internal
	2. Audit and IT Audit), Abu Sayed Mahfuz, Auerbach Publications, 2016.
	3. Practical Model-Based Testing: A Tools Approach, Mark Utting and Bruno Legeard,
	4. Morgan Kaufmann Publishers Inc., San Francisco, CA, 2006.

	5. 6.	Software Quality Engineering, Testing, Quality Assurance, and Quantifiable improvements, Jeff Tian, IEEE Computer Society, 2005. Introduction to Software Engineering, P Ammann and J Offutt, Cambridge University Press, 2008.
Course Description		

Course Description

This course explores the goals of quality assurance and quality control activities performed during the life cycle of a software product. It focuses on integrating test processes with agile software development methodologies. Practical exercises give experience of design, specification, execution of tests plus test automation using tools through a mixture of instructor-directed exercises and student research leading to knowledge sharing.

Course Objectives

The main objective of this course is to expose the student to the key concepts and practices in software testing and quality assurance. All the topics are designed to understand the key aspects of software quality assurance relevant to all phases of the software life cycle, alternative approaches to software testing, application of current automated tools, standards, and emerging trends

Lecture Number	Торіс
W1	Testing techniques
W2, W3	Black Box testing, White Box and Grey Box testing techniques
W4, W5	Quality Assurance planning and execution
W6, W7	Automated testing topics include constructing a framework
W8	scripting techniques
W9	generating a test data
W10, W11	generating test architecture
W12	pre/post-processing
W13	test maintenance
W14	job specific metrics
W15, W16	Current research topics in Software Testing and Quality Assurance.

Course Code	DS501	
Course Title	Tools and Techniques in Data science:	
Cr Hrs	3(3+0)	
Pre-requisite	Nil	
Recommended Texts	1. Python for Data Analysis, 2nd Edition, William McKinney (2018)	
	2. An Introduction to Statistical Learning with Applications in R, 1st	
	Edition, G. James, D. Witten, T. Hastie and R. Tibshirani (2013)	
	3. Computational and Inferential Thinking: The Foundations of Data	
	Science, 1st Edition, A. Adhikari and J. DeNero (2017)	
	4. Data Mining and Analysis: Fundamental Concepts and Algorithms,	
	1st Edition, M.	
	5. Zaki & W. Meira, (2013)	
	6. Data Science from Scratch, 1st Edition, Joel Grus (2015)	
	7. Doing Data Science, 1st Edition, Cathy O'Neil and Rachel Schutt	
	(2013)	
	8. Introduction to Data Science. A Python Approach to Concepts,	
	Techniques and	

9. Applications, 1st Edition, Laura Igual. (2017)

Course Description

Basic concepts and programming tools for handling and processing data. Includes data acquisition, cleaning data sources, application of machine learning techniques and data analysis techniques, large-scale computation on a computing cluster.

Course Objectives

The main objective of this course is to introduce the tools and techniques in data science and explore common challenges and techniques used in analysis of data.

Lecture Number	Торіс
W1, W2	Introduction to Data Science, Data Science Life cycle & Process (Asking
	Right Questions, Obtaining Data, Understanding Data, Building Predictive
	Models, Generating Visualizations)
W3	For Building Data Products, Introduction to Data (Types of Data and
	Datasets),
W4	Data Quality (Measurement and Data Collection Issues),
W5	Data pre-processing Stages, Aggregation, Sampling,
W6	Dimensionality Reduction
W7	Feature subset selection, Feature creation
W8	Algebraic & Probabilistic View of Data
W9	Introduction to Python Data Science Stack (Python, Numpy, Pandas, Matplotlib)
W10	Relational Algebra & SQL, Scraping
W11	Data Wrangling assessing, structuring, cleaning & munging of data
W12	Basic Descriptive & Exploratory Data Analysis, Introduction to Text Analysis (Stemming, Lemmatization, Bag of Words, TF-IDF),
W13	Introduction to Prediction and Inference (Supervised & Unsupervised)
	Algorithms
W14	Introduction to Scikit Learn
W15, W16	Bias-Variance Tradeoff, Model Evaluation & Performance Metrics
	(Accuracy, Contingency Matrix, Precision-Recall, F-1 Score, Lift, etc.),
	Introduction to Map-Reduce paradigm

Week Wise	Distribution	of the Contents
-----------	---------------------	-----------------

Course Code	DS502
Course Title	Statistical and Mathematical Methods for Data Science
Cr Hrs	3(3+0)
Pre-requisite	Nil
Recommended Texts	 1. Probability and Statistics for Computer Scientists, 2nd Edition, Michael Baron (2013) 2. Linear Algebra and Its Applications, 5th Edition, David C. Lay and Steven R. Lay (2016) 3. Introduction to Linear Algebra, 5th Edition, Gilbert Strang (2016) 4. Probability for Computer Scientists, online Edition, David Forsyth. (2018) 5. Probability And Statistics For Computer Science by David Forsyth
Course Description	

This course will introduce students to the statistical and mathematical methods needed in the practice of data analytics. Students will learn the basics of statistics, probability, linear algebra, calculus and optimization techniques relevant to data analytics

Course Objectives

The main objective of this course is to improve students' with their ability to work individually and in team for estimating and testing parameters of appropriate model for the data at hand, and getting results also using the software R for statistical computing, 3. interpreting the final results

Lecture Number	Торіс
W1, W2	Probability: Probability basics (axioms of probability, conditional probability, random variables, expectation, independence, etc.),
W3	Multivariate distributions, Maximum a posteriori and maximum likelihood estimation
W4, W5	Statistics: introduction to concentration bounds,
W6	Laws of large numbers
	Central limit theorem, minimum mean-squared error estimation,
W7	confidence intervals
W8	Linear algebra: Vector spaces, Projections (will also cover the least regression),
W9, W10	Linear transformations
W11, W12	singular value decomposition (this substitute for PCA), eigen decomposition, power method
W13	Optimization: Matrix calculus with Lagrange Multipliers
W14, W15	Gradient descent, coordinate descent
W16	introduction to convex optimization

Week Wise Distribution of the Contents

Course Code	CS661
Course Title	Advance Machine Learning
Cr Hrs	3(3+0)
Pre-requisite	Nil
Recommended Texts	 Elements of Statistical Learning (2001) Pattern Recognition & Machine Learning, 1st Edition, Chris Bishop (2011) Machine Learning: A Probabilistic Perspective, 1st Edition, Kevin R Murphy (2012) Applied Machine Learning, online Edition, David Forsyth, http://luthuli.cs.uiuc.edu/~daf/courses/LearningCourse17/learning- book-6-April-nn- revision.pdf

Course Description

This course introduces several fundamental concepts and methods for machine learning. The objective is to familiarize the audience with basic and advanced learning algorithms and techniques and their applications, as well as general questions related to analyzing and handling large data sets. Several software libraries and data sets publicly available will be used to illustrate the application of these algorithms.

Course Objectives

The main goal of this course is to help students learn, understand, and practice advanced machine learning approaches, which include the study of modern computing scaling up with machine learning techniques focusing on industry applications. Mainly the course objectives are: conceptualization and

summarization of machine learning, machine learning techniques, and scaling up machine learning approaches

Lecture Number	Торіс
W1	Introduction to machine learning and statistical pattern recognition
W2	Supervised learning:
	Part I (Graphical models (full Bayes, Naïve Bayes),
W3	Decision trees for classification & regression for both categorical & numerical
	data
W4	Ensemble methods, Random forests, Boosting (Adaboost and Xgboost),
	Stacking;
W5	Part II (Four Components of Machine Learning Algorithm (Hypothesis, Loss
	Functions, Derivatives and Optimization Algorithms)
W6	Gradient Descent, Stochastic Gradient Descent
W7	Linear Regression, Nonlinear Regression, Perceptron
W8	Support vector machines, Kernel Methods
W9	Logistic Regression, Softmax, Neural networks
W10, W11	Unsupervised learning: K-means, Density Based Clustering Methods
	(DBSCAN, etc.)
W12	Gaussian mixture models, EM algorithm,
W13	Reinforcement learning
W14	Tuning model complexity, Bias-Variance Tradeoff
W15	Grid Search, Random Search
W16	Evaluation Metrics; Reporting predictive performance