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Introduction

The detection of rare events holds immense importance across various sectors, including indus-
tries, video monitoring, self-driving cars, robotics, virtual reality, and other domains. It involves
identifying infrequent occurrences like falling, fighting, and aggression, as well as pinpointing ab-
normal behaviors such as loitering and intrusion. Notably, rare event detection is crucial for smart
cities, medical imaging, and even identifying rare events at specific locations like gas stations.
This technology reduces risks, costs, and o↵ers valuable insights for decision-making systems.
What makes rare events challenging is their context-dependent nature. An event’s normality is
contingent on the circumstances; a crowded market during curfew is abnormal, while the same
crowd during a festival is normal. This contextuality necessitates advanced rare event detection
techniques. The detection of video rare events within computer vision [1] [2] has thus become a
vital research problem, with various studies tackling this issue. Ultimately, rare event detection
enhances safety, decision-making, and situational awareness in various fields, underscoring its
significance in modern technology and society.

Researchers have extensively explored unsupervised rare event detection in video surveillance,
employing statistical, machine learning, and deep learning methods. Statistical techniques like hy-
pothesis testing and Bayesian methods, along with machine learning methods such as clustering,
Support Vector Machines (SVMs), decision trees and Principal Component Analysis (PCA), play
a crucial role. Deep learning has gained prominence, with Convolutional Networks, LSTM (Long
Short-Term Memory) networks, and modified architectures like ConvLSTM and Fully Connected
LSTM (FC-LSTM) tackling spatial and temporal aspects. Autoencoders (AEs) and their varia-
tions, like Convolutional Autoencoders (CAEs) and De-noising Autoencoders (DAEs), aid feature
extraction, while Generative Adversarial Networks (GANs) enhance data distribution and rare
event detection. Imbalance in datasets is addressed using augmentation techniques like oversam-
pling, undersampling, and Synthetic Minority Over-sampling Technique (SMOTE). The diverse
array of techniques [3–9] underscores the drive to develop robust unsupervised rare event detection
for video surveillance. Early GAN-based rare event detection methods like AnoGAN, GANomaly,
and ALAD focused on learning image representations through reconstruction. AnoGAN [10] pio-
neered this by modeling normality in retinal optical coherence tomographic data. GANomaly [6]
used conditional GANs to learn both image and latent space generation for rare event detec-
tion. ALAD [7] introduced a theory and employed three discriminators for improved rare event
detection by constraining data distribution in the latent space. These methods, although signifi-
cant, faced limitations like small image patch constraints, training instability, and high resource
requirements for inference. Nonetheless, they paved the way for leveraging GANs in rare event
detection, laying the foundation for future advancements in this domain.

Vu et al. [11] introduced a robust video rare event detection system using conditional GANs,
accurately identifying rare events across di↵erent representation levels through a layer-wise ap-
proach. Challenges arise when extracting optical flow data, , particularly when dealing with
ambiguous settings featuring areas lacking texture, alterations in lighting conditions, obstruc-
tions, and rapid movements. The encoder-decoder framework known as the Bidirectional GAN
(BiGAN), introduced by Donahue and colleagues [12], introduces an encoder component (E) that
captures the inverse function of the generator, reducing statistical complexity and improving re-
sults, demonstrated on the MNIST dataset . In 2019, Schlegl et al. [13] proposed fast-AnoGAN for
rapid rare event detection at both image and pixel-level localizations. Tang et al. [14] integrated
predictive modeling of future frames with reconstruction techniques to enhance the detection of
rare event. Zheng et al. [3] introduced a sequentially updatable rare event detection framework for
metro station safety. Huang et al. [4] developed TAC-Net using deep contrastive self-supervised
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learning. Minh N et al. [5] predicted rare actions using GANs, while, in the realm of steel surface
flaw classification, Di et al [15] put forth a semi-supervised strategy. In the domain of credit card
fraud detection, Herr et al [16] introduced variational quantum-classical WGANs.

Through the comparison of the current captured perspective with the standard surroundings,
Lawson et al [17] proposed the utilization of automated robotic systems for rare event detection.
These systems could engage in patrol tasks and recognize infrequent occurrences. Additionally, it
is becoming more crucial to identify unusual crowd behaviour in video surveillance settings. [18]
employed 3D-ConVNet and AEs approaches, using AEs to forecast the following frames and 3D-
ConVNet to automatically learn video representation and extract features from both spatial and
temporal dimensions. The rare event score is then determined using the reconstruction error
as a base. Another illustration is found in [19], which presented a model to predict future rare
events by combining GAN and multi-instance learning (MIL) into a single framework. GAN
for predicting future frames and MIL for finding abnormalities. There are various attempts
in the urban setting for video surveillance applications to identify violence or aggressiveness in
recordings. [20] proposed using motion and limb orientation to identify human aggression, while
[21] used video and audio data to detect violent behavior in surveillance footage. These procedures
are largely costly in terms of human labelling. Furthermore, all of them lack explainability and
require future study to incorporate an interpretability component.

In this context, we propose the Spatial-Temporal Diverse Augmentation Wasserstein Genera-
tive Adversarial Network (STDA-WGAN) for the purpose of unsupervised rare event detection in
video sequences. Our approach leverages the power of generative adversarial networks (GANs) to
e↵ectively learn the underlying distribution of normal video frames and their temporal relation-
ships. By incorporating spatial and temporal generators and discriminators, our model captures
both spatial details and temporal patterns, enabling accurate rare event detection in complex
video data. Additionally, we introduce a diverse augmentation strategy to enhance the quality
and quantity of training data, addressing the challenge of imbalanced datasets. Through our
comprehensive methodology, we aim to provide a robust and e�cient solution for detecting rare
events in video data, contributing to the advancement of rare event detection techniques and
their real-world applications.

Problem statement

Video surveillance plays a critical role in identifying rare incidents like accidents, crimes, or
anomalies, which are infrequent compared to regular activities. This underscores the demand
for intelligent computer vision algorithms that can automatically detect such events in videos,
streamlining manual e↵orts and saving time. The primary objective of practical rare event detec-
tion systems is swift identification of deviations from normal patterns and precise determination
of occurrence times. This involves advanced video comprehension to di↵erentiate exceptional
events from usual behaviors. Upon detecting a rare event, subsequent classification techniques
can o↵er further insights. E�cient detection is vital as traditional methods require continuous
human monitoring, facing challenges with obscured objects, varying crowd densities, and com-
plex settings, resulting in slow and labor-intensive processes. Thus, the drive for automated rare
event detection is crucial to reduce human resource involvement and enhance detection accuracy
in surveillance.
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Objectives

1. To introduce an innovative Spatial-Temporal Diverse Augmentation Wasserstein Generative
Adversarial Network (STDA-WGAN) for diverse, coherent multi-modal data generation,
capturing joint spatial-temporal distribution while addressing content diversity challenges.

2. To introduce diverse augmentation in STDA-WGAN, maintaining temporal coherence,
showing improved realism and coherence in generated multi-modal data.

3. To formulate STDA-WGAN loss for realistic and discriminative data generation through
e↵ective guidance of generator and discriminator training.

4. To enhance optical flow estimation with the aim of improving accuracy, e�ciency, and
resource allocation in the estimation process.

Figure 1: STDA-WGAN Training and Testing Process with Rare Event Detection
.

Proposed Methodology

This research proposed the network architecture shown in Figure 1. The proposed Spatial-
Temporal Diverse Augmentation Wasserstein Generative Adversarial Network (STDA-WGAN)
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is a comprehensive model designed to address the challenge of generating coherent and realis-
tic video content with temporal and spatial consistency. The model leverages both spatial and
temporal generators alongside corresponding spatial and temporal discriminators to detect rare
events. The architecture comprises three key components: the spatial generator, the temporal
generator, and two discriminators for spatial and temporal domains.

Diverse Augmentation WGAN (DA-WGAN)

The DA-WGAN (Diverse Augmentation Wasserstein Generative Adversarial Network) frame-
work reinvent WGAN [22] by introduces a series of advanced techniques to address challenges in
generative modeling. DA-WGAN incorporates gradient penalty, weight normalization, and di-
verse augmentation techniques to enhance training stability, mode coverage, and sample diversity.
Firstly, it combines the gradient penalty fromWGAN-GP [23] to enforce Lipschitz continuity, pro-
moting stable discriminator training. Additionally, weight normalization, akin to IWGAN [24],
is applied to further stabilize training by preventing issues with vanishing and exploding gradi-
ents. Inspired by DRAGAN [25], DA-WGAN introduces diverse augmentation during training,
enhancing sample quality by perturbing both real and generated data. This strategy smooths
decision boundaries and contributes to training stability. Moreover, DA-WGAN incorporates a
divergence penalty based on WGAN-DIV [26], encouraging the generator to explore di↵erent data
distribution modes, thus addressing mode collapse and improving sample diversity. By integrat-
ing Cramer GAN [27] principles, DA-WGAN employs Maximum Mean Discrepancy (MMD) as
an extra regularization term, aligning generated and real data distributions for a more stable op-
timization landscape. Lastly, adaptive training rates from TP-GAN [28] ensure balanced training
dynamics between the generator and discriminator, further enhancing stability. Overall, these
techniques collectively position DA-WGAN as an innovative and promising generative model,
excelling in stable training, diverse sample generation, and high-quality results.

Problem Formulation

Given a set of real video frames Xspatial = {xs
1, x

s
2, . . . , x

s
T} representing a sequence of frames in

a video and corresponding optical flow data Xtemporal = {xt
1, x

t
2, . . . , x

t
T}, the goal of the STDA-

WGAN is to learn a generator Gspatial and a generator Gtemporal that can produce synthetic
video frames X0 = {x0

1, x
0
2, . . . , x

0
T} exhibit high visual coherence and temporal consistency. The

model consists of spatial and temporal generators, spatial and temporal discriminators, and a
reconstruction objective.

The spatial generator Gspatial aims to generate spatial content from random noise zs. The
spatial generator will trained to minimize the following loss

LGs = �Ezs⇠pzs [Ds(Gs(zs))] + �div ·KL(pgs ||pxs) + �MMD ·MMD (1)

In Equation (1) where Pzs represents the distribution of noise spatial input zs, Ds(Gs(zs)) denotes
the discriminator score for generated sample zs, Gs(zs) denotes the generated sample from spatial
generator Gs using noise zs, �div regulates the divergence penalty’s intensity, serving as a hyper-
parameter, KL(pgs ||pxs) is the Kullback-Leibler divergence between generator’s and real data
distributions , �MMD is a hyperparameter controlling the strength of the MMD regularization,
MMD measuring the di↵erence between distributions using a kernel function.

The temporal generator Gt generates coherent temporal sequences from random noise zt. The
temporal generator’s loss function will be

LGt = �Ez⇠pzt
[Dt(Gt(zt))] + �div ·KL(pgt ||pxt) + �MMD ·MMD (2)
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In Equation (2) where Pzt represents the distribution of noise input zt , Dt(Gt(zt)) :denotes the
discriminator score for generated temporal sample zt, Gt(zt): denotes the generated sample from
temporal generator Gt using noise zt.

In equations (1) and (2), the generator’s goals in a GAN are clear. It aims to create authentic
samples by minimizing the negative discriminator output for its generated data, prompting data
that closely resembles reality. To counter mode collapse and promote diversity, a divergence
penalty (often using Kullback-Leibler divergence) narrows the distribution gap between generated
and real data. Additionally, a Maximum Mean Discrepancy (MMD) term minimizes di↵erences
in mean feature representations, encouraging the generator to create samples mirroring real data
traits. Combining these techniques enhances both stability and diversity in the GAN’s generated
samples. The temporal discriminator Dt distinguishes between real and generated temporal
sequences. Its loss will be

LDt = �Ex⇠Preal t
[Dt(x)] + Ez⇠Pz [Dt(Gt(z))] + �gp · (krx̂Dt(x̂)k2 � 1)2 (3)

In Equation (3) where Prealt represents the distribution of real temporal samples, Pzt represents
the distribution of noise temporal input z, Dt(xt) is the discriminator score for real sample xt

in the temporal domain, Gt(zt) is the generated sample from the temporal generator using noise
zt, x̂t is a random point obtained by interpolating between real and generated samples, �gp is a
hyperparameter controlling the strength of the gradient penalty.

The spatial discriminator Ds di↵erentiates between real and generated spatial content. Its
loss is

LDs = �Exs⇠Preals
[Ds(xs)] + Ezs⇠Pzs

[Ds(Gs(zs))] + �gp · (krx̂sDs(x̂s)k2 � 1)2 (4)

In Equation (4) where Preals represents the distribution of real spatial samples, Pzs represents
the distribution of noise spatial input zs, Ds(xs) is the discriminator score for real sample xs

in the spatial domain, Gs(zs) is the generated sample from the spatial generator using noise zs,
x̂s is a random point obtained by interpolating between real and generated samples, �gp is a
hyperparameter controlling the strength of the gradient penalty.

Equation (3) and (4) involve terms that correspond to the discriminator’s evaluation of real
and generated data. The first term reflects the discriminator’s assessment of real data, aim-
ing to maximize it for accurate identification. The second term, concerning generated data, is
minimized to e↵ectively di↵erentiate between genuine and generated samples. The third term in-
troduces the Gradient Penalty (GP), penalizing gradients from interpolated data points to enforce
discriminator smoothness, which aids in stable training by preventing extreme behaviors.

The gradient penalty enforces the Lipschitz continuity of the discriminator by adding a penalty
based on the gradient norms of interpolated samples x̂

LGP = �gp · Ex̂⇠Px̂
[(||rx̂D(x̂)||2 � 1)2] (5)

In Equation (5) where �gp is a hyperparameter controlling the strength of the penalty, x̂ =
✏xreal + (1 � ✏)xgen represents the interpolated sample between real and generated samples, ✏ is
sampled from a uniform distribution between 0 and 1. The diversity penalty encourages the
generator to explore various modes of the real spatial distribution by minimizing the squared
Euclidean distance between generated samples and real samples

Ldiversity = �diversity · Ex⇠Preal s


1

�2
||x�Gs(z)||22

�
(6)
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In Equation (6) where �diversity controls the strength of the diversity penalty, Preals is the distri-
bution of real spatial samples, �2 is the variance of the real spatial samples distribution.

The Maximum Mean Discrepancy (MMD) is a distance metric that quantifies the di↵erence
between two distributions, often used as a regularization term in GANs to improve training
stability and mode coverage. The formula for the MMD is as follows

MMD = Ex⇠pdatak(x,x
0)� 2Ex⇠pdata,z⇠p(z)k(x,G(z)) + Ez⇠p(z)k(G(z),G(z0)) (7)

In Equation (7) where k(·,·) Kernel function measuring similarity and all other terms are as
defined above.

The reconstruction error is used to measure the di↵erence between real samples and their
reconstructions

Lreconstruction =
1

N

NX

i=1

�
�reconstruction ·

�
Exs⇠Preals

||xs �Gs(zs)||22 + Ext⇠Prealt
||xt �Gt(zt)||22

��
(8)

In Equation (8) where N is the batch size, �reconstruction controls the strength of the reconstruction
error, Preals is the distribution of real spatial samples, Prealt is the distribution of real temporal
samples.

Video pre-processing

The STDA-WGAN model, outlined in Figure 1, aims to detect rare events in videos. Initial pre-
processing segments input videos into fixed 30 fps(frame per second). The key focus is measuring
dissimilarity between adjacent frames, capturing spatial and temporal complexities. In dataset
creation, videos are standardized to 30 fps. The process involves capturing the first frame and
computing cumulative optical flow di↵erences with the Dynamic Motion-Adaptive Sampling with
Uncertainty Estimation (DMA-SUE) method. This captures spatial and temporal attributes,
e↵ectively reducing data complexity.

DMA-SUE stands out by fusing motion-based frame selection, uncertainty estimation, dy-
namic adaptation, and iterative refinement. It selects high-motion frames, estimates uncertainty
with a model considering motion vectors, texture, and saliency, iteratively refines optical flow
in high-uncertainty areas, emphasizing salient object frames. DMA-SUE prioritizes motion-rich
regions, optimizing resources. This iterative approach enhances the uncertainty model using re-
fined optical flow. Overall, the STDA-WGAN model and DMA-SUE o↵er an e↵ective means
of detecting rare events in videos by leveraging spatial-temporal information and reducing data
dimensions.

DATA AUGMENTATION

Selecting data augmentation techniques for unsupervised STDA-WGAN is complex due to the
absence of rare events in training samples. Traditional methods like noise addition or mix-up,
meant to introduce such events, are insu�cient with a dataset containing only normal data. To
address this, our research employs a diverse set of augmentation methods to enhance abandoned
baggage detection, including random cropping, resizing, color adjustments, rotations, noise ad-
dition, geometric transformations, histogram equalization, cutout, a�ne transformation, shadow
simulation, and blur e↵ects. These techniques empower the model to recognize abandoned bag-
gage e↵ectively under varying conditions.
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Algorithm 1 DA-WGAN with Temporal and Spatial, research proposed algorithm. Research
will use default values of � = 10 , ncritic = 5 ,↵ = 0.0001 , �1 = 0, �2 = 0.9
Input: Gradient penalty coe�cient �gp, weight normalization factor ↵WN, number of augmentation

steps Naug, MMD regularization weight �MMD, divergence penalty weight �div

Input: Initial temporal critic parameters wt,0, initial spatial critic parameters ws,0, initial temporal
generator parameters ✓t,0, initial spatial generator parameters ✓s,0

1: while ✓ has not converged do
2: for t = 1 to Ncritic do
3: for i = 1 to m do
4: Sample real temporal data xt ⇠ Pr,t, real spatial data xs ⇠ Pr,s

5: Sample latent variables zt ⇠ p(zt), zs ⇠ p(zs), random number ✏ ⇠ U [0, 1]
6: Compute the mixed temporal data: x0t = ✏xt + (1� ✏)Gt(zt)
7: Compute the mixed spatial data: x0s = ✏xs + (1� ✏)Gs(zs)
8: Compute the temporal critic loss with gradient penalty:

Lc,t = Dt(x
0
t)�Dt(xt) + �gp

�
krDt(x

0
t)k2 � 1

�2

9: Compute the spatial critic loss with gradient penalty:

Lc,s = Ds(x
0
s)�Ds(xs) + �gp

�
krDs(x

0
s)k2 � 1

�2

10: end for
11: Update temporal critic parameters: wt  Adam(rwtLc,t, wt,↵,�1,�2)
12: Update spatial critic parameters: ws  Adam(rwsLc,s, ws,↵,�1,�2)
13: end for
14: Sample batches of latent variables {zt} ⇠ p(zt), {zs} ⇠ p(zs)
15: Update temporal generator parameters with MMD regularization and mode exploration:

✓t  Adam(r✓t(�Dt(Gt(zt)) + �MMDMMD(Pr,t, P✓t)� �divKL(pgt ||pxt)), ✓t,↵,�1,�2)

16: Update spatial generator parameters with MMD regularization and mode exploration:

✓s  Adam(r✓s(�Ds(Gs(zs)) + �MMDMMD(Pr,s, P✓s)� �divKL(pgs ||pxs)), ✓s,↵,�1,�2)

17: Introduce diverse augmentation on real and generated data:
18: for n = 1 to Naug do
19: Perturb real temporal data: xaugt = xt + noise
20: Perturb real spatial data: xaugs = xs + noise
21: Perturb generated temporal data: xaugt = Gt(zt) + noise
22: Perturb generated spatial data: xaugs = Gs(zs) + noise
23: end for
24: Smooth decision boundaries using diverse augmented data.
25: end while

For unauthorized alteration detection in camera tampering scenarios, we utilize strategies like
noise addition, geometric transformations, blur e↵ects, occlusions, lighting variations, reflections,
camera flare simulation, image forgery detection, compression artifacts simulation, vignetting,
text overlays, and perspective changes. In activity detection, temporal jittering, cropping, motion
blurring, occlusion simulation, lighting variations, scale transformations, frame dropping, speed
changes, object insertion, viewpoint shifts, and weather variations enhance the model’s ability to
classify diverse actions within video streams. Finally, in abnormal student behavior detection,
our approach incorporates pose variations, occlusion simulation, object insertion, lighting changes,
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viewpoint alterations, temporal shifts, clothing modifications, facial expression manipulation, and
background diversification, enabling the model to accurately identify disruptions in classroom
behavior patterns.

Category Datasets Rare action

Abandoned baggage detection UMN,PETS abandoned or left-luggage items in public places

Camera Tampering
Detection

UMN,
UHCTD

a person holding a hand or other object in front of the camera
shining a light or laser pointer into the lens
a person reaching up and turning the camera so that it points in a di↵erent directions

Activity detection

ADOC,
UMN,
UCSD,
Avenue,
,PETS

vehicle in a pedestrian walkway
person on outside pedestrian walkway
golf cart on pedestrian walkway
person on skateboard
walking in the wrong direction
crowds of walking people or individual who suddenly started running
fighting in a pedestrian walkway

Student abnormal behavior
detection in classroom

New School

Student throwing waste material outside a bin
Student standing on a chair/desk on their feet
Student siting on a desk
Student are running in the class
Student are fighting with each other in the classroom
Student are writing on the wall on the classroom

Table 1: Rare action detection dataset table with behaviors

DATASET

The real-time surveillance system is an automated software designed to detect and classify spe-
cific behaviors. The research employs a dataset comprising video footage from diverse sources,
including CCTV cameras and established datasets, encompassing indoor and outdoor settings
like parking lots, o�ce buildings, and public parks. The study selectively incorporates videos
from sources such as UMN, PETS, UHCTD, ADOC, USCD, Avenue, and custom clips. Prior to
analysis, the data undergoes preprocessing to eliminate blank or corrupted frames and normalize
lighting and color balance. The dataset encompasses numerous video clips representing diverse
security and behavioral events, including normal activities, abandoned items, unauthorized park-
ing, camera tampering, and more. The identification of rare events is detailed in Table 1. For
dataset creation, the research involves capturing rare events in a school setting using CCTV
cameras, contributing ample video clips for training and testing.

Time Frame

S.No. Research Components Proposed Time

1 Literature Review 03 months
2 Methodology, Model Design And Data preparation 01 months
3 Implementation of the Proposed Model 01 months
4 Experimental Setup , Validation , Analysis of Results and Iterative Improvements 01 months
5 Thesis Writing 03 months
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