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Introduction 
Temporal relationships between different objects or entities in a network can be modeled as topological 

relationships that change or evolve over time while preserving their essential shape or structure. In other 

words, it refers to the study of how the topology of a space changes over time. Generalized formal models 

are required for the representation of relations among entities connected through time and context forming 

complex networks. Entities in a network might be connected through space, occurring in the same location, 

while the relation among the entities might evolve over time. For example, detecting damage in buildings 

post a natural calamity in satellite images of the same geographical location. Entities in a network might 

also be related through time dependency in a specific time frame. For example, users expressing their 

opinions on social media about an issue, the effect of exogenous events on the adaptation of user sentiments, 

users showing interest in a news story in a specific duration, and customers from a particular area showing 

interest in an item in a specific season. The temporal significance of relationships among entities forming 

evolutionary networks cannot be ignored.  

The real world has numerous examples of non-linear representations of entity relationships in their 

respective environments. These representations and their interactions have been studied by researchers for 

decades. With the recent advancement of Graph Neural Networks (GNN), there is renewed interest in 

developing models that evolve with time [1]–[5]. GNNs are neural network architectures specifically 

designed to work with graph-structured data. GNNs have been used and studied in various areas recently 

such as sentiment analysis [6], program analysis [7], named entity recognition and relation extraction [8], 

and recommendation systems [9]. Similarly, temporal context has been studied in various fields using 

GNNs. Pioneering work has been performed by [10] to study the evolution of a social network with time. 

Temporal adaption of aspect-based sentiment analysis has been studied by [11], [12]. Other areas that have 

used GNNs for capturing the temporal context include traffic prediction [13], recommender systems [14], 

event-based data [15], studying emotion perceptions [16], and multivariate time series forecasting [17]. In 

[18] a recent survey has presented a detailed survey of the different GNNs that can be used for different 

graph types including static and dynamic graphs. They also distinguish between the discrete-time and 

continuous-time dynamic graphs. We can explore the dynamic behavior of entities in a network, that might 

evolve in response to exogenous events, because of drift in user interests, or maintaining semantics between 

two given entities with sequential representation of their properties within a large non-linear environment. 

Although each of these environments warrants a specialized research focus, a generalized model for the 

representation of these complex networks can be developed. 

Networks in the real world consist of entities continuously evolving because of the undergoing processes. 
Modeling and adaptation of these dynamic environments require not only the modelling of the entities in 
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these environments but also the underlying relationships between these entities. Entities in a network 

environment can be related through space (relation between two entities in the network within the same 

time-frame), spatio-temporal (relatedness of the locations of the entities in distinct time-frames), or through 

parent-child affiliation (relatedness of the entities through a transfer of properties in distinct time-frames) 
[19]. Incorporation of these relations into an automatically adaptable model that maintains the context and 

semantics of the dynamic network is a challenge. We propose an approach for the representation and 

adaptation of these properties at the local and global levels in a graph structure using Graph Neural 

Networks (GNN). This representation may allow us to manipulate the temporal properties using 

neighborhood and hierarchical relationships at the sub-graph level. Possible routes between two given 

entities can be explored for the existence of relationships at a global level. Several complex systems can be 
explored to analyze the modelling capabilities of the proposed approach. The objective is to maintain the 

context with the evolution of relations among the entities of the network. The proposed model will represent 

the different types of relationships into a combined structure. The capabilities of the proposed model can 

be illustrated using case studies from different domains: GNN-based recommender systems for adaptive 

user interests, sentiment analysis for adaptive user sentiments, change detection from satellite images, fake 

news detection, fraud detection, citation analysis, etc. We will focus on studying the model for satellite 
image classification for change detection over time.  

The proposed model can be used to extract semantics by studying the current and past states, co-occurrence, 

events, processes, and properties to adapt and possibly predict future trends in these environments. Complex 

networks are formed by exogenous and endogenous events, processes, and changes occurring with time. 

The context and semantics of these occurrences need to be incorporated through adaptive models to capture 

the evolution in these systems. A graph-based model that structures the evolving relations and topology 

maintaining the detailed feature representation of the entities over time and context can be a viable solution 
for these dynamic environments. 

Problem Statement 
Developing generalized techniques appropriate for tracking evolving entities over time is a significant 

challenge. A major challenge is the ability of entities, such as people in a social network, users or items in 

a recommender system, buildings, or vegetation in a location; is to maintain their identities despite 

undergoing physical or conceptual transformations over time. Extracting the properties that will help 

identify a building before and after damage, or users expressing opinions about the same issue from a 

different perspective, or adaptation of user interests in a recommender system can be some examples. Image 
classification can be studied for change detection in satellite images such as climate change, and damage 

assessment. However, the availability of limited labelled data is a significant challenge in studying satellite 

image classification problems. A semi-supervised GNN based method can be well suited to studying this 
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kind of a problem. Most of the current approaches have applied GNNs to study graph structured temporal 

data using the snapshot-based temporal graph approach that follows the time-series format. Real-world 

complex topological systems with heterogeneous entities and relationships, however, might evolve at 

different levels of granularity. Therefore, A context aware dual temporally adaptive mechanism, that can 
model the feature-dynamic, as well as the snapshot-based temporal evolution of the graph structured 

representation of these complex systems is suggested. 

Objectives 
• To explore GNNs to develop an integrated model for the representation and propagation of the 

relationships among entities in complex networks. 

• To study the resulting graph structures at different levels of granularity for maintenance of 

semantics and contextual details due to evolving temporal relationships between the entities of the 

graphs. 

• To illustrate the generalization and adaptation capabilities of the proposed model by performing 

experiments by using satellite images data that can be represented through graph structures. 

• To evaluate and compare the performance of the proposed GNN based modelling against state-of-

the-art approaches. 

Proposed Methodology 
Although the continued identifying features of entities in a network might be application-dependent, the 

proposed method will study the relations between entities that evolve over time, without going into the 

detail of how those relations were formed. Dependency relations between entities can be studied to model 

an entity, such as a person in a social network, a building in a satellite image, or an item in a recommender 

system being the same entity at distinct times. Such relations can be studied for adaptation over time. 
Another assumption of the proposed method is that for studying dynamic networks, evolution may occur 

over time separated by distinct time slices, or it may be triggered by some exogenous event. Most modern 

information retrieval systems store the timestamp details associated with the piece of information. The level 

of granularity for temporal slicing may depend on the type of application or the occurrence some exogenous 

event. For example, user opinions about certain issues can be studied for adaptation over a week, a month, 

or a year, bifurcation of time along pre and post-images of a building with respect to a certain event such 

as flood, or the seasonal interest of a user in an item. Timestamps recorded with social media posts, images 
taken, or items presented for user consumption can be used as a basis for temporal information extraction. 

Some of the existing models can be explored for temporal context adaptation. We propose a GNN-based 

model that can be used for contextual-temporal adaptation called Context-Aware Temporal Graph Network 

(CATGNN). The proposed model extends the standard Temporal Graph Networks (TGNs) [20] to 
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incorporate contextual information by introducing a context-embedded weight matrix that captures the 

time-varying relationships between nodes in the graph. The proposed CATGNN model will incorporate 

context-embedded time-dependent filters that adapt to the temporal changes in the graph structure. This 

allows for the modelling of temporal dynamics in graph data and enables the prediction of future states of 

the graph. TGN has been successfully applied in various applications such as traffic prediction, social 

network analysis, and recommendation systems. The emphasis of the proposed method for incorporating 
contextual adaptation is due to the dependency of message passing between the nodes in GNN on its 

neighbors. The neighbors of a node might evolve over time and continuously evolving neighbors with 

context adaptation might be true representatives for message passing between the neighboring nodes. The 

abstract level flow-chart of the steps of the proposed framework is shown in Figure 1. The framework 

proposes 5 steps: 1). Preprocessing and Feature extraction 2). Graph construction 3). Node Classification 

using GNN 4). Postprocessing, 5) Experiments and evaluation. These steps are briefly explained below. 

Step 1: Preprocessing and Feature Extraction 
Image segmentation is performed to extract superpixels from the given satellite image. Superpixels are 

closely occurring groups of similar pixels that can be combined to form a meaningful entity in an image. 

We intend to use the superpixels as nodes of our GNN. Given an image 𝐼 = {𝑝1, 𝑝2, … , 𝑝𝑘} with 𝑘 pixels, a 

superpixel 𝑆𝑖 is then a set of closely occurring similar pixels 𝑝𝑖 with no overlapping pixels between two 

given sets of superpixels in the image. That is, for an image with 𝑁 superpixels, 𝑆𝑖 is a representation of all 

the superpixels in the image  𝐼 = ⋃ 𝑆𝑖
𝑁
𝑖=1 . For two given superpixels 𝑆𝑗 and 𝑆𝑘, where 𝑆𝑗, 𝑆𝑘 ∈  𝑆𝑖, 𝑆𝑗 ⋂ 𝑆𝑘 =

∅, for nonoverlapping pixels 𝑗 ≠ 𝑘 and 𝑖, 𝑗, 𝑘 = 1,2, … , 𝑁.  

Figure 1: Flowchart of the proposed methodology Sample



5 

 

Several state-of-the-art techniques can be explored for performing segmentation. We intend to use 

unsupervised techniques [21] along with dimensionality reduction methods [22] to increase the 

computational efficiency of the clustering process. For feature extraction, some works have suggested the 

application of mean filter to generate a mean feature vector [23], while others have used Convolution Neural 
Networks (CNN) [24]. Although, based on our initial literature analysis, we suggest using CNN, as shown 

in Figure 2, the proposed method is flexible enough to explore other techniques for feature extraction. 

Therefore, the finality of the technique can be decided after performing comparative exploration. 

Generically, the feature vector for a superpixel 𝑆𝑖, to be represented by node 𝑉 in the graph, can be defined 

as shown in Eq (1) 

 ℎ(𝑆𝑖) = 1
𝑁𝑖

∑ ℎ𝑘
𝑝

𝑘∈𝑆 .                                                 (1) 

where 𝑁𝑖 is the number of superpixels (nodes), and ℎ𝑘
𝑝 represents the feature vector for each node. To 

incorporate the temporal evolution model, we consider sub-graph level evolution by capturing node-wise 

feature adaptation of the nodes with time, along with snapshot time-series of the graph at different intervals. 
This will allow us to model the temporal evolution of the framework at different levels of granularity in the 

graph network. The proposed method assumes that there exists a partially ordered finite set of time points 

𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}, where the time points are in linear order, 𝑡1 < 𝑡𝑖+1 for 1 < 𝑖 < 𝑛, and the time intervals 

are not necessarily of equal length. The proceeding time can be arbitrarily selected based on some 

exogenous event. The presence or absence of certain node features at different time points can provide 

useful information in satellite-based systems studying damage assessment or climate change. Concretely, 

we use 𝐻 to represent the dynamic features set of a node 𝑉 in time domain 𝑇. That is, for each time 𝑡 ∈ 𝑇, 

we have a dynamic feature set 𝐻(𝑡) for the set of nodes 𝑉, such that 𝐻(𝑡) = {ℎ1(𝑡), ℎ2(𝑡), … , ℎ𝑛(𝑡)}. Now 

for every node 𝑣 ∈ 𝑉, the feature set ℎ𝑣
𝑖  at time 𝑡 can be represented as shown in Eq (2)  

 ℎ𝑣
𝑖 =

1
𝑁𝑖

∑ ℎ𝑘
𝑝

𝑘∈𝑉

(𝑡)                                                 (2) 

Step 2: Graph Construction 
The preprocessing and feature extraction steps performed in the previous step result in the creation of 

segmentation masks. A given image 𝐼𝑡 at time 𝑡 ∈ 𝑇 is processed into a set of masks 𝑀𝑡. A weighted directed 

graph 𝐺𝑇(𝑉, 𝐸) is then constructed where the adjacent masks (represented by nodes 𝑉) are connected 

through a set of edges 𝐸 over a given time domain 𝑇, where the number of nodes is equal to the number of 

masks generated.  

Sample



6 

 

 

Figure 2: Architecture of the proposed CATGNN model 

Step 3: Node classification using Graph Neural Networks  
The GNN model for temporal adaptation consists of multiple layers, each of which performs a set of 

operations on the input data. The layers are connected in a feedforward manner. The input to the model is 

a graph with nodes representing the data points and edges representing the relationships between them. 

Each node in the graph is associated with a feature vector ℎ𝑣
𝑖 (𝑡). Each node 𝑣𝑡

𝑖 in the graph 𝐺 is connected 

to an adjacent node 𝑣𝑡+1
𝑗 through a directed edge 𝑒𝑖𝑗. A subgraph 𝑔 ⊆ 𝐺 can be constructed for each node 

using 𝑑-hop neighborhood. For 𝑑 = 1, the subgraph is formed with neighbors that are one step away from 

the given node, and so on. Each subgraph 𝑔 ⊆ 𝐺 consists of node 𝑣 and its 𝑑-hop neigbhors. The 

embeddings for the node are extracted using CNN, as shown in Figure 2. Different variants of CNN have 

been applied in the literature [24]. Appropriate node embedding method will be chosen based on 

experimentation. The feature vector ℎ𝑣
𝑑 for a node 𝑣 with neighbors 𝑑, is updated using the message passing 

method, where the features of the neighboring nodes are aggregated into the node vector. Thus, after 𝑑 

iterations, a node vector contains information about the node itself as well as its 𝑑-hop neighborhood. Once 

the features are extracted and stored in the nodes, the subgraph 𝑔 can be passed to a GNN. The node features 

can be used for performing node or graph classification. Generically, as has been defined in [25], the output 

vector of GNN message passing for the 𝑑-th layer can be represented as shown in Eq (3)  
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 ℎ𝑣
𝑑 = 𝐶(𝑑)(ℎ𝑣

𝑑−1, 𝐴𝐺𝐺(𝑑)({ℎ𝑢
𝑑−1, 𝑢 ∈ 𝑁[𝑣]})                                      (3) 

Where 𝐶 is a combination function, 𝐴𝐺𝐺 is an aggregation function that aggregates the features of the 

neighboring nodes i.e., {ℎ𝑢
𝑑−1, 𝑢 ∈ 𝑁[𝑣]}. 𝑁[𝑣] is the number of neighboring nodes of the given node 𝑣.  

Learnable parameters can be added according to the specific algorithm being used. The temporal GNN 

model can be used for the temporal adaptation of an entity in a graph. Train the GNN model on the node 

features, with the objective of predicting whether each node has changed between time posts 𝑡𝑖 and 𝑡𝑗, 

where 𝑡𝑖, 𝑡𝑗 ∈ 𝑇. Once the model is trained, apply it to a new pair of satellite images at times 𝑡𝑦 and 𝑡𝑧 ∈ 𝑇, 

using the same graph structure as before. Implementation details are shown in Algorithm 1. 

Algorithm 1: Algorithm of the proposed CATGNN model 

Inputs:  

• Satellite images (𝐼(𝑡𝑒), 𝐼(𝑡𝑠)), where 𝑡𝑠 > 𝑡𝑒 showing distinct time 
spots 

• A threshold value (𝜗) 
Output: Binary change map 

1. Dimensionality reduction to obtain images 𝐼𝑟(𝑡𝑒), 𝐼𝑟(𝑡𝑠) 
2. Perform image segmentation obtain image masks 𝑀(𝑡𝑒), 𝑀(𝑡𝑠) 
3. Apply simple linear iterative clustering (SLIC) to obtain 

superpixels ∑ 𝑆𝑖
𝑁
𝑖=1  for 𝑁 clusters, where 𝑆𝑖(𝑡𝑒) ∈ 𝑀(𝑡𝑒) and 𝑆𝑖(𝑡𝑠) ∈

𝑀(𝑡𝑠)  
4. Apply CNN to transform superpixel features into node features 

using Eq (2) 
5. Create graph 𝐺𝑇 = {(𝑔𝑖, 𝑡𝑖): 𝑔𝑖 ∈ 𝐺, 𝑡𝑖 ∈ 𝑇, 𝑖 = 1,2, … 𝑛}  
6. For 𝑡 = 1, … , 𝑇 

a. For each subgraph 𝑔𝑖 ∈ 𝐺, 𝑑 = 𝑘 
b. Combine and aggregate node features and its 𝑘 neighbors 

using Eq (3) 
c. Obtain output 𝑜𝑣 for each node 𝑣 
d. Compute the error loss. 
e. Update the network weights using backpropagation and 

stochastic gradient descent until convergence. 
7. Generate a change probability map. 
8. Use threshold 𝜗 to obtain the binary change map. 
9. Apply morphological operations to the binary change map to remove 

noise and fill small gaps. 
10. Merge adjacent patches with the same label to form larger 

change regions. 
11. Output the final change map. 
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Step 4: Postprocessing 
Predict the likelihood of change at each pixel, and threshold the predictions to generate a binary change 

map. Post-process the change map to remove false positives and false negatives and visualize the results. 

Step 5: Experiments and Evaluation 
Evaluating the temporal GNNs is a particularly challenging task, due to the evolving node/edge or attribute 

features [25]. Experiments will be performed on certain benchmark datasets. The proposed model will be 
evaluated against state-of-the-art methods using standard evaluation measures like average overall 

accuracy, class accuracy, kappa coefficient, and F-1 measure. 

Overall, the GNN model allows us to leverage the spatial relationships between pixels in satellite images 

to improve change detection accuracy. By propagating information through the graph structure, the model 

can capture complex patterns of change that might be difficult to detect using traditional methods. 

Time Frame 
Table 1:  Study Time Frame 

S.NO Research Component Time Required 

1. Experimental work/Data collection/Modelling and 
Computer simulations 

Six months 

2. Analysis and Model Evaluation  Six months 

3. Thesis writing Six months 
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