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Introduction Temporal relationships between different objects or entities in a network can be modeled as topological
relationships that change or evolve over time while preserving their essential shape or structure. In other words, it refers to
the study of how the topology of a space changes over time. Generalized formal models are required for the representation of
relations among entities connected through time and context forming complex networks. Entities in a network might be
connected through space, occurring in the same location, while the relation among the entities might evolve over time. For
example, detecting damage in buildings post a natural calamity in satellite images of the same geographical location. Entities
in a network might also be related through time dependency in a specific time frame. For example, users expressing their
opinions on social media about an issue, the effect of exogenous events on the adaptation of user sentiments, users showing
interest in a news story in a specific duration, and customers from a particular area showing interest in an item in a specific
season. The temporal significance of relationships among entities forming evolutionary networks cannot be ignored. The real
world has numerous examples of non-linear representations of entity relationships in their respective environments. These
representations and their interactions have been studied by researchers for decades. With the recent advancement of Graph
Neural Networks (GNN), there is renewed interest in developing models that evolve with time [1]–[5]. GNNs are neural
network architectures specifically designed to work with graph-structured data. GNNs have been used and studied in various
areas recently such as sentiment analysis [6], program analysis [7], named entity recognition and relation extraction [8], and
recommendation systems [9]. Similarly, temporal context has been studied in various fields using GNNs. Pioneering work has
been performed by [10] to study the evolution of a social network with time. Temporal adaption of aspect-based sentiment
analysis has been studied by [11], [12]. Other areas that have used GNNs for capturing the temporal context include traffic
prediction [13], recommender systems [14], event-based data [15], studying emotion perceptions [16], and multivariate time
series forecasting [17]. In [18] a recent survey has presented a detailed survey of the different GNNs that can be used for
different graph types including static and dynamic graphs. They also distinguish between the discrete-time and continuous-
time dynamic graphs. We can explore the dynamic behavior of entities in a network, that might evolve in response to
exogenous events, because of drift in user interests, or maintaining semantics between two given entities with sequential
representation of their properties within a large non-linear environment. Although each of these environments warrants a
specialized research focus, a generalized model for the representation of these complex networks can be developed. Networks
in the real world consist of entities continuously evolving because of the undergoing processes. Modeling and adaptation of
these dynamic environments require not only the modelling of the entities in 1 these environments but also the underlying
relationships between these entities. Entities in a network environment can be related through space (relation between two
entities in the network within the same time-frame), spatio-temporal (relatedness of the locations of the entities in distinct
time-frames), or through parent-child affiliation (relatedness of the entities through a transfer of properties in distinct time-
frames) [19]. Incorporation of these relations into an automatically adaptable model that maintains the context and semantics
of the dynamic network is a challenge. We propose an approach for the representation and adaptation of these properties at
the local and global levels in a graph structure using Graph Neural Networks (GNN). This representation may allow us to
manipulate the temporal properties using neighborhood and hierarchical relationships at the sub-graph level. Possible routes
between two given entities can be explored for the existence of relationships at a global level. Several complex systems can
be explored to analyze the modelling capabilities of the proposed approach. The objective is to maintain the context with the
evolution of relations among the entities of the network. The proposed model will represent the different types of relationships
into a combined structure. The capabilities of the proposed model can be illustrated using case studies from different domains:
GNN-based recommender systems for adaptive user interests, sentiment analysis for adaptive user sentiments, change
detection from satellite images, fake news detection, fraud detection, citation analysis, etc. We will focus on studying the
model for satellite image classification for change detection over time. The proposed model can be used to extract semantics
by studying the current and past states, co-occurrence, events, processes, and properties to adapt and possibly predict future
trends in these environments. Complex networks are formed by exogenous and endogenous events, processes, and changes
occurring with time. The context and semantics of these occurrences need to be incorporated through adaptive models to
capture the evolution in these systems. A graph-based model that structures the evolving relations and topology maintaining
the detailed feature representation of the entities over time and context can be a viable solution for these dynamic
environments. Problem Statement Developing generalized techniques appropriate for tracking evolving entities over time is a
significant challenge. A major challenge is the ability of entities, such as people in a social network, users or items in a
recommender system, buildings, or vegetation in a location; is to maintain their identities despite undergoing physical or
conceptual transformations over time. Extracting the properties that will help identify a building before and after damage, or
users expressing opinions about the same issue from a different perspective, or adaptation of user interests in a recommender
system can be some examples. Image classification can be studied for change detection in satellite images such as climate
change, and damage assessment. However, the availability of limited labelled data is a significant challenge in studying
satellite image classification problems. A semi-supervised GNN based method can be well suited to studying this kind of a
problem. Most of the current approaches have applied GNNs to study graph structured temporal data using the snapshot-
based temporal graph approach that follows the time-series format. Real-world complex topological systems with
heterogeneous entities and relationships, however, might evolve at different levels of granularity. Therefore, A context aware
dual temporally adaptive mechanism, that can model the feature-dynamic, as well as the snapshot-based temporal evolution
of the graph structured representation of these complex systems is suggested. Objectives • To explore GNNs to develop an
integrated model for the representation and propagation of the relationships among entities in complex networks. • To study
the resulting graph structures at different levels of granularity for maintenance of semantics and contextual details due to
evolving temporal relationships between the entities of the graphs. • To illustrate the generalization and adaptation
capabilities of the proposed model by performing experiments by using satellite images data that can be represented through
graph structures. • To evaluate and compare the performance of the proposed GNN based modelling against state-of- the-art
approaches. Proposed Methodology Although the continued identifying features of entities in a network might be application-
dependent, the proposed method will study the relations between entities that evolve over time, without going into the detail
of how those relations were formed. Dependency relations between entities can be studied to model an entity, such as a
person in a social network, a building in a satellite image, or an item in a recommender system being the same entity at
distinct times. Such relations can be studied for adaptation over time. Another assumption of the proposed method is that for
studying dynamic networks, evolution may occur over time separated by distinct time slices, or it may be triggered by some
exogenous event. Most modern information retrieval systems store the timestamp details associated with the piece of
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information. The level of granularity for temporal slicing may depend on the type of application or the occurrence some
exogenous event. For example, user opinions about certain issues can be studied for adaptation over a week, a month, or a
year, bifurcation of time along pre and post-images of a building with respect to a certain event such as flood, or the seasonal
interest of a user in an item. Timestamps recorded with social media posts, images taken, or items presented for user
consumption can be used as a basis for temporal information extraction. Some of the existing models can be explored for
temporal context adaptation. We propose a GNN-based model that can be used for contextual-temporal adaptation called
Context-Aware Temporal Graph Network (CATGNN). The proposed model extends the standard Temporal Graph Networks
(TGNs) [20] to 3 Figure 1: Flowchart of the proposed methodology incorporate contextual information by introducing a
context-embedded weight matrix that captures the time-varying relationships between nodes in the graph. The proposed
CATGNN model will incorporate context-embedded time-dependent filters that adapt to the temporal changes in the graph
structure. This allows for the modelling of temporal dynamics in graph data and enables the prediction of future states of the
graph. TGN has been successfully applied in various applications such as traffic prediction, social network analysis, and
recommendation systems. The emphasis of the proposed method for incorporating contextual adaptation is due to the
dependency of message passing between the nodes in GNN on its neighbors. The neighbors of a node might evolve over time
and continuously evolving neighbors with context adaptation might be true representatives for message passing between the
neighboring nodes. The abstract level flow-chart of the steps of the proposed framework is shown in Figure 1. The framework
proposes 5 steps: 1). Preprocessing and Feature extraction 2). Graph construction 3). Node Classification using GNN 4).
Postprocessing, 5) Experiments and evaluation. These steps are briefly explained below. Step 1: Preprocessing and Feature
Extraction Image segmentation is performed to extract superpixels from the given satellite image. Superpixels are closely
occurring groups of similar pixels that can be combined to form a meaningful entity in an image. We intend to use the
superpixels as nodes of our GNN. Given an image ! = {"1, "2, … , "#} with # pixels, a superpixel $# is then a set of closely
occurring similar pixels "# with no overlapping pixels between two given sets of superpixels in the image. That is, for an image
with % superpixels, $# is a representation of all the superpixels in the image ! = ⋃&#=1 $#. For two given superpixels $# and
$#, where $#, $# ∈ $#, $# ⋂ $# = ∅, for nonoverlapping pixels # ≠ # and #, #, # = 1,2, … , %. Several state-of-the-art techniques
can be explored for performing segmentation. We intend to use unsupervised techniques [21] along with dimensionality
reduction methods [22] to increase the computational efficiency of the clustering process. For feature extraction, some works
have suggested the application of mean filter to generate a mean feature vector [23], while others have used Convolution
Neural Networks (CNN) [24]. Although, based on our initial literature analysis, we suggest using CNN, as shown in Figure 2,
the proposed method is flexible enough to explore other techniques for feature extraction. Therefore, the finality of the
technique can be decided after performing comparative exploration. Generically, the feature vector for a superpixel $#, to be
represented by node ' in the graph, can be defined as shown in Eq (1) ℎ($#) = &# ∑#∈$ ℎ#(. 1 (1) where %# is the number of
superpixels (nodes), and ℎ(# represents the feature vector for each node. To incorporate the temporal evolution model, we
consider sub-graph level evolution by capturing node-wise feature adaptation of the nodes with time, along with snapshot
time-series of the graph at different intervals. This will allow us to model the temporal evolution of the framework at different
levels of granularity in the graph network. The proposed method assumes that there exists a partially ordered finite set of
time points $ = {)1, )2, … , )"}, where the time points are in linear order, )1 < )#+1 for 1 < # < ", and the time intervals are
not necessarily of equal length. The proceeding time can be arbitrarily selected based on some exogenous event. The
presence or absence of certain node features at different time points can provide useful information in satellite-based systems
studying damage assessment or climate change. Concretely, we use ! to represent the dynamic features set of a node ' in
time domain $. That is, for each time ) ∈ $, we have a dynamic feature set !()) for the set of nodes ', such that !()) = {ℎ1()),
ℎ2()), … , ℎ"())}. Now for every node ) ∈ ', the feature set ℎ#* at time ) can be represented as shown in Eq (2) ℎ*# = ∑ ℎ(# ()) 1
(2) %# #∈' Step 2: Graph Construction The preprocessing and feature extraction steps performed in the previous step result in
the creation of segmentation masks. A given image !* at time ) ∈ $ is processed into a set of masks %*. A weighted directed
graph !$(', +) is then constructed where the adjacent masks (represented by nodes ') are connected through a set of edges
+ over a given time domain $, where the number of nodes is equal to the number of masks generated. Figure 2: Architecture
of the proposed CATGNN model Step 3: Node classification using Graph Neural Networks The GNN model for temporal
adaptation consists of multiple layers, each of which performs a set of operations on the input data. The layers are connected
in a feedforward manner. The input to the model is a graph with nodes representing the data points and edges representing
the relationships between them. Each node in the graph is associated with a feature vector ℎ*#()). Each node )*# in the graph !
is connected to an adjacent node )*#+1through a directed edge ,##. A subgraph - ⊆ ! can be constructed for each node using ,-
hop neighborhood. For , = 1, the subgraph is formed with neighbors that are one step away from the given node, and so on.
Each subgraph - ⊆ ! consists of node ) and its ,-hop neigbhors. The embeddings for the node are extracted using CNN, as
shown in Figure 2. Different variants of CNN have been applied in the literature [24]. Appropriate node embedding method will
be chosen based on experimentation. The feature vector ℎ,* for a node ) with neighbors ,, is updated using the message
passing method, where the features of the neighboring nodes are aggregated into the node vector. Thus, after , iterations, a
node vector contains information about the node itself as well as its ,-hop neighborhood. Once the features are extracted and
stored in the nodes, the subgraph - can be passed to a GNN. The node features can be used for performing node or graph
classification. Generically, as has been defined in [25], the output vector of GNN message passing for the ,-th layer can be
represented as shown in Eq (3) ℎ*, = .(,)(ℎ,*−1, /!!(,)({ℎ,*−1, ) ∈ %[)]}) (3) Where . is a combination function, /!! is an
aggregation function that aggregates the features of the neighboring nodes i.e., {ℎ,*−1, ) ∈ %[)]}. %[)] is the number of
neighboring nodes of the given node ). Learnable parameters can be added according to the specific algorithm being used. The
temporal GNN model can be used for the temporal adaptation of an entity in a graph. Train the GNN model on the node
features, with the objective of predicting whether each node has changed between time posts )# and )#, where )#, )# ∈ $. Once
the model is trained, apply it to a new pair of satellite images at times )0 and )0 ∈ $, using the same graph structure as before.
Implementation details are shown in Algorithm 1. Algorithm 1: Algorithm of the proposed CATGNN model Inputs: • Satellite
images (!(),), !()*)), where )* > ), showing distinct time spots • A threshold value (1) Output: Binary change map 1.
Dimensionality reduction to obtain images !*(),), !*()*) 2. Perform image segmentation obtain image masks %(),), %()*) 3.
Apply simple linear iterative clustering (SLIC) to obtain superpixels ∑#&=1 $# for % clusters, where $#(),) ∈ %(),) and $#()*) ∈
%()*) 4. Apply CNN to transform superpixel features into node features using Eq (2) 5. Create graph !$ = {(-#, )#): -# ∈ !, )# ∈
$, # = 1,2, … "} 6. For ) = 1, … , $ a. For each subgraph -# ∈ !, , = # b. Combine and aggregate node features and its #
neighbors using Eq (3) c. Obtain output "* for each node ) d. Compute the error loss. e. Update the network weights using
backpropagation and stochastic gradient descent until convergence. 7. Generate a change probability map. 8. Use threshold 1
to obtain the binary change map. 9. Apply morphological operations to the binary change map to remove noise and fill small
gaps. 10. Merge adjacent patches with the same label to form larger change regions. 11. Output the final change map. Step
4: Postprocessing Predict the likelihood of change at each pixel, and threshold the predictions to generate a binary change
map. Post-process the change map to remove false positives and false negatives and visualize the results. Step 5:
Experiments and Evaluation Evaluating the temporal GNNs is a particularly challenging task, due to the evolving node/edge or
attribute features [25]. Experiments will be performed on certain benchmark datasets. The proposed model will be evaluated
against state-of-the-art methods using standard evaluation measures like average overall accuracy, class accuracy, kappa
coefficient, and F-1 measure. Overall, the GNN model allows us to leverage the spatial relationships between pixels in satellite
images to improve change detection accuracy. By propagating information through the graph structure, the model can capture
complex patterns of change that might be difficult to detect using traditional methods. Time Frame Table 1: Study Time Frame
S.NO Research Component Time Required 1. Experimental work/Data collection/Modelling and Computer simulations Six
months 2. Analysis and Model Evaluation Six months 3. Thesis writing Six months 2 4 5 6 7 8


